Evaluate
4x^{3}-\frac{2}{x^{3}}
Differentiate w.r.t. x
12x^{2}+\frac{6}{x^{4}}
Share
Copied to clipboard
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}-5+\frac{1}{x^{2}}+41)
Anything divided by one gives itself.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}+36+\frac{1}{x^{2}})
Add -5 and 41 to get 36.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x^{4}+36\right)x^{2}}{x^{2}}+\frac{1}{x^{2}})
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{4}+36 times \frac{x^{2}}{x^{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x^{4}+36\right)x^{2}+1}{x^{2}})
Since \frac{\left(x^{4}+36\right)x^{2}}{x^{2}} and \frac{1}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{6}+36x^{2}+1}{x^{2}})
Do the multiplications in \left(x^{4}+36\right)x^{2}+1.
\frac{x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}+36x^{2}+1)-\left(x^{6}+36x^{2}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2})}{\left(x^{2}\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{x^{2}\left(6x^{6-1}+2\times 36x^{2-1}\right)-\left(x^{6}+36x^{2}+1\right)\times 2x^{2-1}}{\left(x^{2}\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{x^{2}\left(6x^{5}+72x^{1}\right)-\left(x^{6}+36x^{2}+1\right)\times 2x^{1}}{\left(x^{2}\right)^{2}}
Simplify.
\frac{x^{2}\times 6x^{5}+x^{2}\times 72x^{1}-\left(x^{6}+36x^{2}+1\right)\times 2x^{1}}{\left(x^{2}\right)^{2}}
Multiply x^{2} times 6x^{5}+72x^{1}.
\frac{x^{2}\times 6x^{5}+x^{2}\times 72x^{1}-\left(x^{6}\times 2x^{1}+36x^{2}\times 2x^{1}+2x^{1}\right)}{\left(x^{2}\right)^{2}}
Multiply x^{6}+36x^{2}+1 times 2x^{1}.
\frac{6x^{2+5}+72x^{2+1}-\left(2x^{6+1}+36\times 2x^{2+1}+2x^{1}\right)}{\left(x^{2}\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{6x^{7}+72x^{3}-\left(2x^{7}+72x^{3}+2x^{1}\right)}{\left(x^{2}\right)^{2}}
Simplify.
\frac{4x^{7}-2x^{5}}{\left(x^{2}\right)^{2}}
Combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}