Evaluate
\frac{122\left(3x^{2}-30x+2\right)}{\left(x-5\right)^{2}}
Differentiate w.r.t. x
\frac{17812}{\left(x-5\right)^{3}}
Share
Copied to clipboard
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(3x^{2}-2\right)\times 122}{x-5})
Express \frac{3x^{2}-2}{x-5}\times 122 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{366x^{2}-244}{x-5})
Use the distributive property to multiply 3x^{2}-2 by 122.
\frac{\left(x^{1}-5\right)\frac{\mathrm{d}}{\mathrm{d}x}(366x^{2}-244)-\left(366x^{2}-244\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-5)}{\left(x^{1}-5\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(x^{1}-5\right)\times 2\times 366x^{2-1}-\left(366x^{2}-244\right)x^{1-1}}{\left(x^{1}-5\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(x^{1}-5\right)\times 732x^{1}-\left(366x^{2}-244\right)x^{0}}{\left(x^{1}-5\right)^{2}}
Do the arithmetic.
\frac{x^{1}\times 732x^{1}-5\times 732x^{1}-\left(366x^{2}x^{0}-244x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Expand using distributive property.
\frac{732x^{1+1}-5\times 732x^{1}-\left(366x^{2}-244x^{0}\right)}{\left(x^{1}-5\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{732x^{2}-3660x^{1}-\left(366x^{2}-244x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Do the arithmetic.
\frac{732x^{2}-3660x^{1}-366x^{2}-\left(-244x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Remove unnecessary parentheses.
\frac{\left(732-366\right)x^{2}-3660x^{1}-\left(-244x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Combine like terms.
\frac{366x^{2}-3660x^{1}-\left(-244x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Subtract 366 from 732.
\frac{366x^{2}-3660x-\left(-244x^{0}\right)}{\left(x-5\right)^{2}}
For any term t, t^{1}=t.
\frac{366x^{2}-3660x-\left(-244\right)}{\left(x-5\right)^{2}}
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}