Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\times 3}{3x^{3}}-\frac{4x}{3x^{3}}-x)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{3} and 3x^{2} is 3x^{3}. Multiply \frac{3}{x^{3}} times \frac{3}{3}. Multiply \frac{4}{3x^{2}} times \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\times 3-4x}{3x^{3}}-x)
Since \frac{3\times 3}{3x^{3}} and \frac{4x}{3x^{3}} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{9-4x}{3x^{3}}-x)
Do the multiplications in 3\times 3-4x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{9-4x}{3x^{3}}-\frac{x\times 3x^{3}}{3x^{3}})
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{3x^{3}}{3x^{3}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{9-4x-x\times 3x^{3}}{3x^{3}})
Since \frac{9-4x}{3x^{3}} and \frac{x\times 3x^{3}}{3x^{3}} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{9-4x-3x^{4}}{3x^{3}})
Do the multiplications in 9-4x-x\times 3x^{3}.
\frac{3x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(-4x^{1}-3x^{4}+9)-\left(-4x^{1}-3x^{4}+9\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{3})}{\left(3x^{3}\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{3x^{3}\left(-4x^{1-1}+4\left(-3\right)x^{4-1}\right)-\left(-4x^{1}-3x^{4}+9\right)\times 3\times 3x^{3-1}}{\left(3x^{3}\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{3x^{3}\left(-4x^{0}-12x^{3}\right)-\left(-4x^{1}-3x^{4}+9\right)\times 9x^{2}}{\left(3x^{3}\right)^{2}}
Simplify.
\frac{3x^{3}\left(-4\right)x^{0}+3x^{3}\left(-12\right)x^{3}-\left(-4x^{1}-3x^{4}+9\right)\times 9x^{2}}{\left(3x^{3}\right)^{2}}
Multiply 3x^{3} times -4x^{0}-12x^{3}.
\frac{3x^{3}\left(-4\right)x^{0}+3x^{3}\left(-12\right)x^{3}-\left(-4x^{1}\times 9x^{2}-3x^{4}\times 9x^{2}+9\times 9x^{2}\right)}{\left(3x^{3}\right)^{2}}
Multiply -4x^{1}-3x^{4}+9 times 9x^{2}.
\frac{3\left(-4\right)x^{3}+3\left(-12\right)x^{3+3}-\left(-4\times 9x^{1+2}-3\times 9x^{4+2}+9\times 9x^{2}\right)}{\left(3x^{3}\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{-12x^{3}-36x^{6}-\left(-36x^{3}-27x^{6}+81x^{2}\right)}{\left(3x^{3}\right)^{2}}
Simplify.
\frac{24x^{3}-9x^{6}-81x^{2}}{\left(3x^{3}\right)^{2}}
Combine like terms.