\frac{d}{d \left(xxx \right) } \left(x \times y \times (2-x-y+1 \right)
Evaluate
\frac{y\left(3-y-x\right)}{x^{2}}
Expand
\frac{3y-y^{2}-xy}{x^{2}}
Share
Copied to clipboard
\frac{d}{dx^{2}x}xy\left(2-x-y+1\right)
Multiply x and x to get x^{2}.
\frac{d}{dx^{3}}xy\left(2-x-y+1\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{x^{3}}xy\left(2-x-y+1\right)
Cancel out d in both numerator and denominator.
\frac{1}{x^{3}}xy\left(3-x-y\right)
Add 2 and 1 to get 3.
\frac{x}{x^{3}}y\left(3-x-y\right)
Express \frac{1}{x^{3}}x as a single fraction.
\frac{1}{x^{2}}y\left(3-x-y\right)
Cancel out x in both numerator and denominator.
\frac{y}{x^{2}}\left(3-x-y\right)
Express \frac{1}{x^{2}}y as a single fraction.
\frac{y\left(3-x-y\right)}{x^{2}}
Express \frac{y}{x^{2}}\left(3-x-y\right) as a single fraction.
\frac{3y-yx-y^{2}}{x^{2}}
Use the distributive property to multiply y by 3-x-y.
\frac{d}{dx^{2}x}xy\left(2-x-y+1\right)
Multiply x and x to get x^{2}.
\frac{d}{dx^{3}}xy\left(2-x-y+1\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{x^{3}}xy\left(2-x-y+1\right)
Cancel out d in both numerator and denominator.
\frac{1}{x^{3}}xy\left(3-x-y\right)
Add 2 and 1 to get 3.
\frac{x}{x^{3}}y\left(3-x-y\right)
Express \frac{1}{x^{3}}x as a single fraction.
\frac{1}{x^{2}}y\left(3-x-y\right)
Cancel out x in both numerator and denominator.
\frac{y}{x^{2}}\left(3-x-y\right)
Express \frac{1}{x^{2}}y as a single fraction.
\frac{y\left(3-x-y\right)}{x^{2}}
Express \frac{y}{x^{2}}\left(3-x-y\right) as a single fraction.
\frac{3y-yx-y^{2}}{x^{2}}
Use the distributive property to multiply y by 3-x-y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}