Solve for x
x=-\frac{8y}{3}+40
Solve for y
y=-\frac{3x}{8}+15
Graph
Share
Copied to clipboard
8y=120-3x
Multiply both sides of the equation by 24, the least common multiple of 3,8.
120-3x=8y
Swap sides so that all variable terms are on the left hand side.
-3x=8y-120
Subtract 120 from both sides.
\frac{-3x}{-3}=\frac{8y-120}{-3}
Divide both sides by -3.
x=\frac{8y-120}{-3}
Dividing by -3 undoes the multiplication by -3.
x=-\frac{8y}{3}+40
Divide -120+8y by -3.
8y=120-3x
Multiply both sides of the equation by 24, the least common multiple of 3,8.
\frac{8y}{8}=\frac{120-3x}{8}
Divide both sides by 8.
y=\frac{120-3x}{8}
Dividing by 8 undoes the multiplication by 8.
y=-\frac{3x}{8}+15
Divide 120-3x by 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}