Solve for x
x = \frac{33}{7} = 4\frac{5}{7} \approx 4.714285714
Graph
Share
Copied to clipboard
6\left(x-9\right)-\left(3x-9\right)=\left(-6-2x\right)\times 2
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-3\right)\left(x+3\right), the least common multiple of x^{2}-9,2x+6,9-3x.
6x-54-\left(3x-9\right)=\left(-6-2x\right)\times 2
Use the distributive property to multiply 6 by x-9.
6x-54-3x+9=\left(-6-2x\right)\times 2
To find the opposite of 3x-9, find the opposite of each term.
3x-54+9=\left(-6-2x\right)\times 2
Combine 6x and -3x to get 3x.
3x-45=\left(-6-2x\right)\times 2
Add -54 and 9 to get -45.
3x-45=-12-4x
Use the distributive property to multiply -6-2x by 2.
3x-45+4x=-12
Add 4x to both sides.
7x-45=-12
Combine 3x and 4x to get 7x.
7x=-12+45
Add 45 to both sides.
7x=33
Add -12 and 45 to get 33.
x=\frac{33}{7}
Divide both sides by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}