Solve for x
x = \frac{161}{39} = 4\frac{5}{39} \approx 4.128205128
Graph
Share
Copied to clipboard
15\left(x-3\right)+12\times 2\left(x-4\right)-20=0
Multiply both sides of the equation by 60, the least common multiple of 4,5,3.
15x-45+12\times 2\left(x-4\right)-20=0
Use the distributive property to multiply 15 by x-3.
15x-45+24\left(x-4\right)-20=0
Multiply 12 and 2 to get 24.
15x-45+24x-96-20=0
Use the distributive property to multiply 24 by x-4.
39x-45-96-20=0
Combine 15x and 24x to get 39x.
39x-141-20=0
Subtract 96 from -45 to get -141.
39x-161=0
Subtract 20 from -141 to get -161.
39x=161
Add 161 to both sides. Anything plus zero gives itself.
x=\frac{161}{39}
Divide both sides by 39.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}