Solve for x
x=-\frac{b^{2}-5b+8}{\left(b-2\right)\left(b-1\right)}
b\neq 2\text{ and }b\neq 1
Solve for b (complex solution)
\left\{\begin{matrix}b=\frac{\sqrt{x^{2}-10x-7}+3x+5}{2\left(x+1\right)}\text{; }b=\frac{-\sqrt{x^{2}-10x-7}+3x+5}{2\left(x+1\right)}\text{, }&x\neq -1\\b=3\text{, }&x=-1\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{\sqrt{x^{2}-10x-7}+3x+5}{2\left(x+1\right)}\text{; }b=\frac{-\sqrt{x^{2}-10x-7}+3x+5}{2\left(x+1\right)}\text{, }&\left(x\neq -1\text{ and }x\leq 5-4\sqrt{2}\right)\text{ or }x\geq 4\sqrt{2}+5\\b=3\text{, }&x=-1\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(b-1\right)\left(b-2\right)\left(x-2\right)+\left(b-1\right)\times 2+\left(\frac{1}{b-2}+\frac{x}{b-1}\right)\left(b-1\right)\left(b-1\right)\left(b-2\right)^{2}=0
Multiply both sides of the equation by \left(b-1\right)\left(b-2\right)^{2}, the least common multiple of b-2,b^{2}-4b+4,b-1.
\left(b^{2}-3b+2\right)\left(x-2\right)+\left(b-1\right)\times 2+\left(\frac{1}{b-2}+\frac{x}{b-1}\right)\left(b-1\right)\left(b-1\right)\left(b-2\right)^{2}=0
Use the distributive property to multiply b-1 by b-2 and combine like terms.
b^{2}x-2b^{2}-3bx+6b+2x-4+\left(b-1\right)\times 2+\left(\frac{1}{b-2}+\frac{x}{b-1}\right)\left(b-1\right)\left(b-1\right)\left(b-2\right)^{2}=0
Use the distributive property to multiply b^{2}-3b+2 by x-2.
b^{2}x-2b^{2}-3bx+6b+2x-4+2b-2+\left(\frac{1}{b-2}+\frac{x}{b-1}\right)\left(b-1\right)\left(b-1\right)\left(b-2\right)^{2}=0
Use the distributive property to multiply b-1 by 2.
b^{2}x-2b^{2}-3bx+8b+2x-4-2+\left(\frac{1}{b-2}+\frac{x}{b-1}\right)\left(b-1\right)\left(b-1\right)\left(b-2\right)^{2}=0
Combine 6b and 2b to get 8b.
b^{2}x-2b^{2}-3bx+8b+2x-6+\left(\frac{1}{b-2}+\frac{x}{b-1}\right)\left(b-1\right)\left(b-1\right)\left(b-2\right)^{2}=0
Subtract 2 from -4 to get -6.
b^{2}x-2b^{2}-3bx+8b+2x-6+\left(\frac{1}{b-2}+\frac{x}{b-1}\right)\left(b-1\right)^{2}\left(b-2\right)^{2}=0
Multiply b-1 and b-1 to get \left(b-1\right)^{2}.
b^{2}x-2b^{2}-3bx+8b+2x-6+\left(\frac{b-1}{\left(b-2\right)\left(b-1\right)}+\frac{x\left(b-2\right)}{\left(b-2\right)\left(b-1\right)}\right)\left(b-1\right)^{2}\left(b-2\right)^{2}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b-2 and b-1 is \left(b-2\right)\left(b-1\right). Multiply \frac{1}{b-2} times \frac{b-1}{b-1}. Multiply \frac{x}{b-1} times \frac{b-2}{b-2}.
b^{2}x-2b^{2}-3bx+8b+2x-6+\frac{b-1+x\left(b-2\right)}{\left(b-2\right)\left(b-1\right)}\left(b-1\right)^{2}\left(b-2\right)^{2}=0
Since \frac{b-1}{\left(b-2\right)\left(b-1\right)} and \frac{x\left(b-2\right)}{\left(b-2\right)\left(b-1\right)} have the same denominator, add them by adding their numerators.
b^{2}x-2b^{2}-3bx+8b+2x-6+\frac{b-1+xb-2x}{\left(b-2\right)\left(b-1\right)}\left(b-1\right)^{2}\left(b-2\right)^{2}=0
Do the multiplications in b-1+x\left(b-2\right).
b^{2}x-2b^{2}-3bx+8b+2x-6+\frac{b-1+xb-2x}{\left(b-2\right)\left(b-1\right)}\left(b^{2}-2b+1\right)\left(b-2\right)^{2}=0
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(b-1\right)^{2}.
b^{2}x-2b^{2}-3bx+8b+2x-6+\frac{b-1+xb-2x}{\left(b-2\right)\left(b-1\right)}\left(b^{2}-2b+1\right)\left(b^{2}-4b+4\right)=0
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(b-2\right)^{2}.
b^{2}x-2b^{2}-3bx+8b+2x-6+\frac{\left(b-1+xb-2x\right)\left(b^{2}-2b+1\right)}{\left(b-2\right)\left(b-1\right)}\left(b^{2}-4b+4\right)=0
Express \frac{b-1+xb-2x}{\left(b-2\right)\left(b-1\right)}\left(b^{2}-2b+1\right) as a single fraction.
b^{2}x-2b^{2}-3bx+8b+2x-6+\frac{\left(b-1+xb-2x\right)\left(b^{2}-2b+1\right)\left(b^{2}-4b+4\right)}{\left(b-2\right)\left(b-1\right)}=0
Express \frac{\left(b-1+xb-2x\right)\left(b^{2}-2b+1\right)}{\left(b-2\right)\left(b-1\right)}\left(b^{2}-4b+4\right) as a single fraction.
b^{2}x-2b^{2}-3bx+8b+2x-6+\frac{\left(b-2\right)^{2}\left(b-1\right)^{2}\left(bx-2x+b-1\right)}{\left(b-2\right)\left(b-1\right)}=0
Factor the expressions that are not already factored in \frac{\left(b-1+xb-2x\right)\left(b^{2}-2b+1\right)\left(b^{2}-4b+4\right)}{\left(b-2\right)\left(b-1\right)}.
b^{2}x-2b^{2}-3bx+8b+2x-6+\left(b-2\right)\left(b-1\right)\left(bx-2x+b-1\right)=0
Cancel out \left(b-2\right)\left(b-1\right) in both numerator and denominator.
b^{2}x-2b^{2}-3bx+8b+2x-6+xb^{3}-5xb^{2}+8bx-4x+b^{3}-4b^{2}+5b-2=0
Expand the expression.
-4b^{2}x-2b^{2}-3bx+8b+2x-6+xb^{3}+8bx-4x+b^{3}-4b^{2}+5b-2=0
Combine b^{2}x and -5xb^{2} to get -4b^{2}x.
-4b^{2}x-2b^{2}+5bx+8b+2x-6+xb^{3}-4x+b^{3}-4b^{2}+5b-2=0
Combine -3bx and 8bx to get 5bx.
-4b^{2}x-2b^{2}+5bx+8b-2x-6+xb^{3}+b^{3}-4b^{2}+5b-2=0
Combine 2x and -4x to get -2x.
-4b^{2}x-6b^{2}+5bx+8b-2x-6+xb^{3}+b^{3}+5b-2=0
Combine -2b^{2} and -4b^{2} to get -6b^{2}.
-4b^{2}x-6b^{2}+5bx+13b-2x-6+xb^{3}+b^{3}-2=0
Combine 8b and 5b to get 13b.
-4b^{2}x-6b^{2}+5bx+13b-2x-8+xb^{3}+b^{3}=0
Subtract 2 from -6 to get -8.
-4b^{2}x+5bx+13b-2x-8+xb^{3}+b^{3}=6b^{2}
Add 6b^{2} to both sides. Anything plus zero gives itself.
-4b^{2}x+5bx-2x-8+xb^{3}+b^{3}=6b^{2}-13b
Subtract 13b from both sides.
-4b^{2}x+5bx-2x+xb^{3}+b^{3}=6b^{2}-13b+8
Add 8 to both sides.
-4b^{2}x+5bx-2x+xb^{3}=6b^{2}-13b+8-b^{3}
Subtract b^{3} from both sides.
\left(-4b^{2}+5b-2+b^{3}\right)x=6b^{2}-13b+8-b^{3}
Combine all terms containing x.
\left(b^{3}-4b^{2}+5b-2\right)x=8-13b+6b^{2}-b^{3}
The equation is in standard form.
\frac{\left(b^{3}-4b^{2}+5b-2\right)x}{b^{3}-4b^{2}+5b-2}=\frac{\left(b-1\right)\left(-b^{2}+5b-8\right)}{b^{3}-4b^{2}+5b-2}
Divide both sides by -4b^{2}+5b-2+b^{3}.
x=\frac{\left(b-1\right)\left(-b^{2}+5b-8\right)}{b^{3}-4b^{2}+5b-2}
Dividing by -4b^{2}+5b-2+b^{3} undoes the multiplication by -4b^{2}+5b-2+b^{3}.
x=\frac{-b^{2}+5b-8}{\left(b-2\right)\left(b-1\right)}
Divide \left(-8+5b-b^{2}\right)\left(-1+b\right) by -4b^{2}+5b-2+b^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}