Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}-\frac{x^{2}-x+1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}-x+1 and x+1 is \left(x+1\right)\left(x^{2}-x+1\right). Multiply \frac{x-2}{x^{2}-x+1} times \frac{x+1}{x+1}. Multiply \frac{1}{x+1} times \frac{x^{2}-x+1}{x^{2}-x+1}.
\frac{\left(x-2\right)\left(x+1\right)-\left(x^{2}-x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Since \frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)} and \frac{x^{2}-x+1}{\left(x+1\right)\left(x^{2}-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+x-2x-2-x^{2}+x-1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Do the multiplications in \left(x-2\right)\left(x+1\right)-\left(x^{2}-x+1\right).
\frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Combine like terms in x^{2}+x-2x-2-x^{2}+x-1.
\frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}
Factor x^{3}+1.
\frac{-3+x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}
Since \frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)} and \frac{x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+x}{\left(x+1\right)\left(x^{2}-x+1\right)}
Combine like terms in -3+x^{2}+x+3.
\frac{x\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}
Factor the expressions that are not already factored in \frac{x^{2}+x}{\left(x+1\right)\left(x^{2}-x+1\right)}.
\frac{x}{x^{2}-x+1}
Cancel out x+1 in both numerator and denominator.
\frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}-\frac{x^{2}-x+1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}-x+1 and x+1 is \left(x+1\right)\left(x^{2}-x+1\right). Multiply \frac{x-2}{x^{2}-x+1} times \frac{x+1}{x+1}. Multiply \frac{1}{x+1} times \frac{x^{2}-x+1}{x^{2}-x+1}.
\frac{\left(x-2\right)\left(x+1\right)-\left(x^{2}-x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Since \frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)} and \frac{x^{2}-x+1}{\left(x+1\right)\left(x^{2}-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+x-2x-2-x^{2}+x-1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Do the multiplications in \left(x-2\right)\left(x+1\right)-\left(x^{2}-x+1\right).
\frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Combine like terms in x^{2}+x-2x-2-x^{2}+x-1.
\frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}
Factor x^{3}+1.
\frac{-3+x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}
Since \frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)} and \frac{x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+x}{\left(x+1\right)\left(x^{2}-x+1\right)}
Combine like terms in -3+x^{2}+x+3.
\frac{x\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}
Factor the expressions that are not already factored in \frac{x^{2}+x}{\left(x+1\right)\left(x^{2}-x+1\right)}.
\frac{x}{x^{2}-x+1}
Cancel out x+1 in both numerator and denominator.