Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-12+\frac{8}{39}\left(x-12\right)+8x+8\times 2=0
Multiply both sides of the equation by 8.
x-12+\frac{8}{39}x+\frac{8}{39}\left(-12\right)+8x+8\times 2=0
Use the distributive property to multiply \frac{8}{39} by x-12.
x-12+\frac{8}{39}x+\frac{8\left(-12\right)}{39}+8x+8\times 2=0
Express \frac{8}{39}\left(-12\right) as a single fraction.
x-12+\frac{8}{39}x+\frac{-96}{39}+8x+8\times 2=0
Multiply 8 and -12 to get -96.
x-12+\frac{8}{39}x-\frac{32}{13}+8x+8\times 2=0
Reduce the fraction \frac{-96}{39} to lowest terms by extracting and canceling out 3.
\frac{47}{39}x-12-\frac{32}{13}+8x+8\times 2=0
Combine x and \frac{8}{39}x to get \frac{47}{39}x.
\frac{47}{39}x-\frac{156}{13}-\frac{32}{13}+8x+8\times 2=0
Convert -12 to fraction -\frac{156}{13}.
\frac{47}{39}x+\frac{-156-32}{13}+8x+8\times 2=0
Since -\frac{156}{13} and \frac{32}{13} have the same denominator, subtract them by subtracting their numerators.
\frac{47}{39}x-\frac{188}{13}+8x+8\times 2=0
Subtract 32 from -156 to get -188.
\frac{359}{39}x-\frac{188}{13}+8\times 2=0
Combine \frac{47}{39}x and 8x to get \frac{359}{39}x.
\frac{359}{39}x-\frac{188}{13}+16=0
Multiply 8 and 2 to get 16.
\frac{359}{39}x-\frac{188}{13}+\frac{208}{13}=0
Convert 16 to fraction \frac{208}{13}.
\frac{359}{39}x+\frac{-188+208}{13}=0
Since -\frac{188}{13} and \frac{208}{13} have the same denominator, add them by adding their numerators.
\frac{359}{39}x+\frac{20}{13}=0
Add -188 and 208 to get 20.
\frac{359}{39}x=-\frac{20}{13}
Subtract \frac{20}{13} from both sides. Anything subtracted from zero gives its negation.
x=-\frac{20}{13}\times \frac{39}{359}
Multiply both sides by \frac{39}{359}, the reciprocal of \frac{359}{39}.
x=\frac{-20\times 39}{13\times 359}
Multiply -\frac{20}{13} times \frac{39}{359} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-780}{4667}
Do the multiplications in the fraction \frac{-20\times 39}{13\times 359}.
x=-\frac{60}{359}
Reduce the fraction \frac{-780}{4667} to lowest terms by extracting and canceling out 13.