Solve for x
x\in (-\infty,-\frac{1}{2}]\cup (2,\infty)
Graph
Share
Copied to clipboard
\frac{x-1}{x-2}-\frac{3}{4-2x}\geq 0
Subtract \frac{3}{4-2x} from both sides.
\frac{x-1}{x-2}-\frac{3}{2\left(-x+2\right)}\geq 0
Factor 4-2x.
\frac{2\left(x-1\right)}{2\left(x-2\right)}-\frac{3\left(-1\right)}{2\left(x-2\right)}\geq 0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and 2\left(-x+2\right) is 2\left(x-2\right). Multiply \frac{x-1}{x-2} times \frac{2}{2}. Multiply \frac{3}{2\left(-x+2\right)} times \frac{-1}{-1}.
\frac{2\left(x-1\right)-3\left(-1\right)}{2\left(x-2\right)}\geq 0
Since \frac{2\left(x-1\right)}{2\left(x-2\right)} and \frac{3\left(-1\right)}{2\left(x-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x-2+3}{2\left(x-2\right)}\geq 0
Do the multiplications in 2\left(x-1\right)-3\left(-1\right).
\frac{2x+1}{2\left(x-2\right)}\geq 0
Combine like terms in 2x-2+3.
\frac{2x+1}{2x-4}\geq 0
Use the distributive property to multiply 2 by x-2.
2x+1\leq 0 2x-4<0
For the quotient to be ≥0, 2x+1 and 2x-4 have to be both ≤0 or both ≥0, and 2x-4 cannot be zero. Consider the case when 2x+1\leq 0 and 2x-4 is negative.
x\leq -\frac{1}{2}
The solution satisfying both inequalities is x\leq -\frac{1}{2}.
2x+1\geq 0 2x-4>0
Consider the case when 2x+1\geq 0 and 2x-4 is positive.
x>2
The solution satisfying both inequalities is x>2.
x\leq -\frac{1}{2}\text{; }x>2
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}