Solve for x
x=-4
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
\left(x+3\right)\left(x+5\right)\left(x+6\right)\left(x-1\right)-\left(x+2\right)\left(x+5\right)\left(x+6\right)\left(x-2\right)=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Variable x cannot be equal to any of the values -6,-5,-3,-2 since division by zero is not defined. Multiply both sides of the equation by \left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x+6\right), the least common multiple of x+2,x+3,x+5,x+6.
\left(x^{2}+8x+15\right)\left(x+6\right)\left(x-1\right)-\left(x+2\right)\left(x+5\right)\left(x+6\right)\left(x-2\right)=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Use the distributive property to multiply x+3 by x+5 and combine like terms.
\left(x^{3}+14x^{2}+63x+90\right)\left(x-1\right)-\left(x+2\right)\left(x+5\right)\left(x+6\right)\left(x-2\right)=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Use the distributive property to multiply x^{2}+8x+15 by x+6 and combine like terms.
x^{4}+13x^{3}+49x^{2}+27x-90-\left(x+2\right)\left(x+5\right)\left(x+6\right)\left(x-2\right)=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Use the distributive property to multiply x^{3}+14x^{2}+63x+90 by x-1 and combine like terms.
x^{4}+13x^{3}+49x^{2}+27x-90-\left(x^{2}+7x+10\right)\left(x+6\right)\left(x-2\right)=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Use the distributive property to multiply x+2 by x+5 and combine like terms.
x^{4}+13x^{3}+49x^{2}+27x-90-\left(x^{3}+13x^{2}+52x+60\right)\left(x-2\right)=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Use the distributive property to multiply x^{2}+7x+10 by x+6 and combine like terms.
x^{4}+13x^{3}+49x^{2}+27x-90-\left(x^{4}+11x^{3}+26x^{2}-44x-120\right)=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Use the distributive property to multiply x^{3}+13x^{2}+52x+60 by x-2 and combine like terms.
x^{4}+13x^{3}+49x^{2}+27x-90-x^{4}-11x^{3}-26x^{2}+44x+120=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
To find the opposite of x^{4}+11x^{3}+26x^{2}-44x-120, find the opposite of each term.
13x^{3}+49x^{2}+27x-90-11x^{3}-26x^{2}+44x+120=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Combine x^{4} and -x^{4} to get 0.
2x^{3}+49x^{2}+27x-90-26x^{2}+44x+120=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Combine 13x^{3} and -11x^{3} to get 2x^{3}.
2x^{3}+23x^{2}+27x-90+44x+120=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Combine 49x^{2} and -26x^{2} to get 23x^{2}.
2x^{3}+23x^{2}+71x-90+120=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Combine 27x and 44x to get 71x.
2x^{3}+23x^{2}+71x+30=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Add -90 and 120 to get 30.
2x^{3}+23x^{2}+71x+30=\left(x^{2}+5x+6\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Use the distributive property to multiply x+2 by x+3 and combine like terms.
2x^{3}+23x^{2}+71x+30=\left(x^{3}+11x^{2}+36x+36\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Use the distributive property to multiply x^{2}+5x+6 by x+6 and combine like terms.
2x^{3}+23x^{2}+71x+30=x^{4}+7x^{3}-8x^{2}-108x-144-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Use the distributive property to multiply x^{3}+11x^{2}+36x+36 by x-4 and combine like terms.
2x^{3}+23x^{2}+71x+30=x^{4}+7x^{3}-8x^{2}-108x-144-\left(x^{2}+5x+6\right)\left(x+5\right)\left(x-5\right)
Use the distributive property to multiply x+2 by x+3 and combine like terms.
2x^{3}+23x^{2}+71x+30=x^{4}+7x^{3}-8x^{2}-108x-144-\left(x^{3}+10x^{2}+31x+30\right)\left(x-5\right)
Use the distributive property to multiply x^{2}+5x+6 by x+5 and combine like terms.
2x^{3}+23x^{2}+71x+30=x^{4}+7x^{3}-8x^{2}-108x-144-\left(x^{4}+5x^{3}-19x^{2}-125x-150\right)
Use the distributive property to multiply x^{3}+10x^{2}+31x+30 by x-5 and combine like terms.
2x^{3}+23x^{2}+71x+30=x^{4}+7x^{3}-8x^{2}-108x-144-x^{4}-5x^{3}+19x^{2}+125x+150
To find the opposite of x^{4}+5x^{3}-19x^{2}-125x-150, find the opposite of each term.
2x^{3}+23x^{2}+71x+30=7x^{3}-8x^{2}-108x-144-5x^{3}+19x^{2}+125x+150
Combine x^{4} and -x^{4} to get 0.
2x^{3}+23x^{2}+71x+30=2x^{3}-8x^{2}-108x-144+19x^{2}+125x+150
Combine 7x^{3} and -5x^{3} to get 2x^{3}.
2x^{3}+23x^{2}+71x+30=2x^{3}+11x^{2}-108x-144+125x+150
Combine -8x^{2} and 19x^{2} to get 11x^{2}.
2x^{3}+23x^{2}+71x+30=2x^{3}+11x^{2}+17x-144+150
Combine -108x and 125x to get 17x.
2x^{3}+23x^{2}+71x+30=2x^{3}+11x^{2}+17x+6
Add -144 and 150 to get 6.
2x^{3}+23x^{2}+71x+30-2x^{3}=11x^{2}+17x+6
Subtract 2x^{3} from both sides.
23x^{2}+71x+30=11x^{2}+17x+6
Combine 2x^{3} and -2x^{3} to get 0.
23x^{2}+71x+30-11x^{2}=17x+6
Subtract 11x^{2} from both sides.
12x^{2}+71x+30=17x+6
Combine 23x^{2} and -11x^{2} to get 12x^{2}.
12x^{2}+71x+30-17x=6
Subtract 17x from both sides.
12x^{2}+54x+30=6
Combine 71x and -17x to get 54x.
12x^{2}+54x+30-6=0
Subtract 6 from both sides.
12x^{2}+54x+24=0
Subtract 6 from 30 to get 24.
x=\frac{-54±\sqrt{54^{2}-4\times 12\times 24}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 54 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-54±\sqrt{2916-4\times 12\times 24}}{2\times 12}
Square 54.
x=\frac{-54±\sqrt{2916-48\times 24}}{2\times 12}
Multiply -4 times 12.
x=\frac{-54±\sqrt{2916-1152}}{2\times 12}
Multiply -48 times 24.
x=\frac{-54±\sqrt{1764}}{2\times 12}
Add 2916 to -1152.
x=\frac{-54±42}{2\times 12}
Take the square root of 1764.
x=\frac{-54±42}{24}
Multiply 2 times 12.
x=-\frac{12}{24}
Now solve the equation x=\frac{-54±42}{24} when ± is plus. Add -54 to 42.
x=-\frac{1}{2}
Reduce the fraction \frac{-12}{24} to lowest terms by extracting and canceling out 12.
x=-\frac{96}{24}
Now solve the equation x=\frac{-54±42}{24} when ± is minus. Subtract 42 from -54.
x=-4
Divide -96 by 24.
x=-\frac{1}{2} x=-4
The equation is now solved.
\left(x+3\right)\left(x+5\right)\left(x+6\right)\left(x-1\right)-\left(x+2\right)\left(x+5\right)\left(x+6\right)\left(x-2\right)=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Variable x cannot be equal to any of the values -6,-5,-3,-2 since division by zero is not defined. Multiply both sides of the equation by \left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x+6\right), the least common multiple of x+2,x+3,x+5,x+6.
\left(x^{2}+8x+15\right)\left(x+6\right)\left(x-1\right)-\left(x+2\right)\left(x+5\right)\left(x+6\right)\left(x-2\right)=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Use the distributive property to multiply x+3 by x+5 and combine like terms.
\left(x^{3}+14x^{2}+63x+90\right)\left(x-1\right)-\left(x+2\right)\left(x+5\right)\left(x+6\right)\left(x-2\right)=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Use the distributive property to multiply x^{2}+8x+15 by x+6 and combine like terms.
x^{4}+13x^{3}+49x^{2}+27x-90-\left(x+2\right)\left(x+5\right)\left(x+6\right)\left(x-2\right)=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Use the distributive property to multiply x^{3}+14x^{2}+63x+90 by x-1 and combine like terms.
x^{4}+13x^{3}+49x^{2}+27x-90-\left(x^{2}+7x+10\right)\left(x+6\right)\left(x-2\right)=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Use the distributive property to multiply x+2 by x+5 and combine like terms.
x^{4}+13x^{3}+49x^{2}+27x-90-\left(x^{3}+13x^{2}+52x+60\right)\left(x-2\right)=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Use the distributive property to multiply x^{2}+7x+10 by x+6 and combine like terms.
x^{4}+13x^{3}+49x^{2}+27x-90-\left(x^{4}+11x^{3}+26x^{2}-44x-120\right)=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Use the distributive property to multiply x^{3}+13x^{2}+52x+60 by x-2 and combine like terms.
x^{4}+13x^{3}+49x^{2}+27x-90-x^{4}-11x^{3}-26x^{2}+44x+120=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
To find the opposite of x^{4}+11x^{3}+26x^{2}-44x-120, find the opposite of each term.
13x^{3}+49x^{2}+27x-90-11x^{3}-26x^{2}+44x+120=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Combine x^{4} and -x^{4} to get 0.
2x^{3}+49x^{2}+27x-90-26x^{2}+44x+120=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Combine 13x^{3} and -11x^{3} to get 2x^{3}.
2x^{3}+23x^{2}+27x-90+44x+120=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Combine 49x^{2} and -26x^{2} to get 23x^{2}.
2x^{3}+23x^{2}+71x-90+120=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Combine 27x and 44x to get 71x.
2x^{3}+23x^{2}+71x+30=\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Add -90 and 120 to get 30.
2x^{3}+23x^{2}+71x+30=\left(x^{2}+5x+6\right)\left(x+6\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Use the distributive property to multiply x+2 by x+3 and combine like terms.
2x^{3}+23x^{2}+71x+30=\left(x^{3}+11x^{2}+36x+36\right)\left(x-4\right)-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Use the distributive property to multiply x^{2}+5x+6 by x+6 and combine like terms.
2x^{3}+23x^{2}+71x+30=x^{4}+7x^{3}-8x^{2}-108x-144-\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x-5\right)
Use the distributive property to multiply x^{3}+11x^{2}+36x+36 by x-4 and combine like terms.
2x^{3}+23x^{2}+71x+30=x^{4}+7x^{3}-8x^{2}-108x-144-\left(x^{2}+5x+6\right)\left(x+5\right)\left(x-5\right)
Use the distributive property to multiply x+2 by x+3 and combine like terms.
2x^{3}+23x^{2}+71x+30=x^{4}+7x^{3}-8x^{2}-108x-144-\left(x^{3}+10x^{2}+31x+30\right)\left(x-5\right)
Use the distributive property to multiply x^{2}+5x+6 by x+5 and combine like terms.
2x^{3}+23x^{2}+71x+30=x^{4}+7x^{3}-8x^{2}-108x-144-\left(x^{4}+5x^{3}-19x^{2}-125x-150\right)
Use the distributive property to multiply x^{3}+10x^{2}+31x+30 by x-5 and combine like terms.
2x^{3}+23x^{2}+71x+30=x^{4}+7x^{3}-8x^{2}-108x-144-x^{4}-5x^{3}+19x^{2}+125x+150
To find the opposite of x^{4}+5x^{3}-19x^{2}-125x-150, find the opposite of each term.
2x^{3}+23x^{2}+71x+30=7x^{3}-8x^{2}-108x-144-5x^{3}+19x^{2}+125x+150
Combine x^{4} and -x^{4} to get 0.
2x^{3}+23x^{2}+71x+30=2x^{3}-8x^{2}-108x-144+19x^{2}+125x+150
Combine 7x^{3} and -5x^{3} to get 2x^{3}.
2x^{3}+23x^{2}+71x+30=2x^{3}+11x^{2}-108x-144+125x+150
Combine -8x^{2} and 19x^{2} to get 11x^{2}.
2x^{3}+23x^{2}+71x+30=2x^{3}+11x^{2}+17x-144+150
Combine -108x and 125x to get 17x.
2x^{3}+23x^{2}+71x+30=2x^{3}+11x^{2}+17x+6
Add -144 and 150 to get 6.
2x^{3}+23x^{2}+71x+30-2x^{3}=11x^{2}+17x+6
Subtract 2x^{3} from both sides.
23x^{2}+71x+30=11x^{2}+17x+6
Combine 2x^{3} and -2x^{3} to get 0.
23x^{2}+71x+30-11x^{2}=17x+6
Subtract 11x^{2} from both sides.
12x^{2}+71x+30=17x+6
Combine 23x^{2} and -11x^{2} to get 12x^{2}.
12x^{2}+71x+30-17x=6
Subtract 17x from both sides.
12x^{2}+54x+30=6
Combine 71x and -17x to get 54x.
12x^{2}+54x=6-30
Subtract 30 from both sides.
12x^{2}+54x=-24
Subtract 30 from 6 to get -24.
\frac{12x^{2}+54x}{12}=-\frac{24}{12}
Divide both sides by 12.
x^{2}+\frac{54}{12}x=-\frac{24}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}+\frac{9}{2}x=-\frac{24}{12}
Reduce the fraction \frac{54}{12} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{9}{2}x=-2
Divide -24 by 12.
x^{2}+\frac{9}{2}x+\left(\frac{9}{4}\right)^{2}=-2+\left(\frac{9}{4}\right)^{2}
Divide \frac{9}{2}, the coefficient of the x term, by 2 to get \frac{9}{4}. Then add the square of \frac{9}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{9}{2}x+\frac{81}{16}=-2+\frac{81}{16}
Square \frac{9}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{9}{2}x+\frac{81}{16}=\frac{49}{16}
Add -2 to \frac{81}{16}.
\left(x+\frac{9}{4}\right)^{2}=\frac{49}{16}
Factor x^{2}+\frac{9}{2}x+\frac{81}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
x+\frac{9}{4}=\frac{7}{4} x+\frac{9}{4}=-\frac{7}{4}
Simplify.
x=-\frac{1}{2} x=-4
Subtract \frac{9}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}