Solve for x
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
\left(x+1\right)\left(x-1\right)=2x+\left(x+1\right)^{2}
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)^{2}, the least common multiple of x+1,\left(x+1\right)^{2}.
x^{2}-1=2x+\left(x+1\right)^{2}
Consider \left(x+1\right)\left(x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
x^{2}-1=2x+x^{2}+2x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}-1=4x+x^{2}+1
Combine 2x and 2x to get 4x.
x^{2}-1-4x=x^{2}+1
Subtract 4x from both sides.
x^{2}-1-4x-x^{2}=1
Subtract x^{2} from both sides.
-1-4x=1
Combine x^{2} and -x^{2} to get 0.
-4x=1+1
Add 1 to both sides.
-4x=2
Add 1 and 1 to get 2.
x=\frac{2}{-4}
Divide both sides by -4.
x=-\frac{1}{2}
Reduce the fraction \frac{2}{-4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}