Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-1}{35}=\frac{y-36}{42-36}
Subtract 1 from 36 to get 35.
\frac{x-1}{35}=\frac{y-36}{6}
Subtract 36 from 42 to get 6.
\frac{1}{35}x-\frac{1}{35}=\frac{y-36}{6}
Divide each term of x-1 by 35 to get \frac{1}{35}x-\frac{1}{35}.
\frac{1}{35}x-\frac{1}{35}=\frac{1}{6}y-6
Divide each term of y-36 by 6 to get \frac{1}{6}y-6.
\frac{1}{35}x=\frac{1}{6}y-6+\frac{1}{35}
Add \frac{1}{35} to both sides.
\frac{1}{35}x=\frac{1}{6}y-\frac{209}{35}
Add -6 and \frac{1}{35} to get -\frac{209}{35}.
\frac{1}{35}x=\frac{y}{6}-\frac{209}{35}
The equation is in standard form.
\frac{\frac{1}{35}x}{\frac{1}{35}}=\frac{\frac{y}{6}-\frac{209}{35}}{\frac{1}{35}}
Multiply both sides by 35.
x=\frac{\frac{y}{6}-\frac{209}{35}}{\frac{1}{35}}
Dividing by \frac{1}{35} undoes the multiplication by \frac{1}{35}.
x=\frac{35y}{6}-209
Divide \frac{y}{6}-\frac{209}{35} by \frac{1}{35} by multiplying \frac{y}{6}-\frac{209}{35} by the reciprocal of \frac{1}{35}.
\frac{x-1}{35}=\frac{y-36}{42-36}
Subtract 1 from 36 to get 35.
\frac{x-1}{35}=\frac{y-36}{6}
Subtract 36 from 42 to get 6.
\frac{1}{35}x-\frac{1}{35}=\frac{y-36}{6}
Divide each term of x-1 by 35 to get \frac{1}{35}x-\frac{1}{35}.
\frac{1}{35}x-\frac{1}{35}=\frac{1}{6}y-6
Divide each term of y-36 by 6 to get \frac{1}{6}y-6.
\frac{1}{6}y-6=\frac{1}{35}x-\frac{1}{35}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{6}y=\frac{1}{35}x-\frac{1}{35}+6
Add 6 to both sides.
\frac{1}{6}y=\frac{1}{35}x+\frac{209}{35}
Add -\frac{1}{35} and 6 to get \frac{209}{35}.
\frac{1}{6}y=\frac{x+209}{35}
The equation is in standard form.
\frac{\frac{1}{6}y}{\frac{1}{6}}=\frac{x+209}{\frac{1}{6}\times 35}
Multiply both sides by 6.
y=\frac{x+209}{\frac{1}{6}\times 35}
Dividing by \frac{1}{6} undoes the multiplication by \frac{1}{6}.
y=\frac{6x+1254}{35}
Divide \frac{209+x}{35} by \frac{1}{6} by multiplying \frac{209+x}{35} by the reciprocal of \frac{1}{6}.