Evaluate
\frac{x^{4}-1}{2}
Expand
\frac{x^{4}-1}{2}
Graph
Share
Copied to clipboard
\frac{x-1}{2}\left(2x-\left(x-1\right)\right)\left(x^{2}+x-\left(x-1\right)\right)
Cancel out 2 and 2.
\frac{x-1}{2}\left(2x-x+1\right)\left(x^{2}+x-\left(x-1\right)\right)
To find the opposite of x-1, find the opposite of each term.
\frac{x-1}{2}\left(x+1\right)\left(x^{2}+x-\left(x-1\right)\right)
Combine 2x and -x to get x.
\frac{x-1}{2}\left(x+1\right)\left(x^{2}+x-x+1\right)
To find the opposite of x-1, find the opposite of each term.
\frac{x-1}{2}\left(x+1\right)\left(x^{2}+1\right)
Combine x and -x to get 0.
\frac{\left(x-1\right)\left(x+1\right)}{2}\left(x^{2}+1\right)
Express \frac{x-1}{2}\left(x+1\right) as a single fraction.
\frac{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)}{2}
Express \frac{\left(x-1\right)\left(x+1\right)}{2}\left(x^{2}+1\right) as a single fraction.
\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{2}
Use the distributive property to multiply x-1 by x+1 and combine like terms.
\frac{\left(x^{2}\right)^{2}-1}{2}
Consider \left(x^{2}-1\right)\left(x^{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{x^{4}-1}{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{x-1}{2}\left(2x-\left(x-1\right)\right)\left(x^{2}+x-\left(x-1\right)\right)
Cancel out 2 and 2.
\frac{x-1}{2}\left(2x-x+1\right)\left(x^{2}+x-\left(x-1\right)\right)
To find the opposite of x-1, find the opposite of each term.
\frac{x-1}{2}\left(x+1\right)\left(x^{2}+x-\left(x-1\right)\right)
Combine 2x and -x to get x.
\frac{x-1}{2}\left(x+1\right)\left(x^{2}+x-x+1\right)
To find the opposite of x-1, find the opposite of each term.
\frac{x-1}{2}\left(x+1\right)\left(x^{2}+1\right)
Combine x and -x to get 0.
\frac{\left(x-1\right)\left(x+1\right)}{2}\left(x^{2}+1\right)
Express \frac{x-1}{2}\left(x+1\right) as a single fraction.
\frac{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)}{2}
Express \frac{\left(x-1\right)\left(x+1\right)}{2}\left(x^{2}+1\right) as a single fraction.
\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{2}
Use the distributive property to multiply x-1 by x+1 and combine like terms.
\frac{\left(x^{2}\right)^{2}-1}{2}
Consider \left(x^{2}-1\right)\left(x^{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{x^{4}-1}{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}