Skip to main content
Solve for y (complex solution)
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

\left(-x-z\right)\left(x+z\right)-\left(-x+z\right)\left(x-z\right)=-z\left(2x^{2}+zy\right)
Multiply both sides of the equation by \left(x-z\right)\left(-x-z\right), the least common multiple of x-z,x+z,x^{2}-z^{2}.
-x^{2}-2xz-z^{2}-\left(-x+z\right)\left(x-z\right)=-z\left(2x^{2}+zy\right)
Use the distributive property to multiply -x-z by x+z and combine like terms.
-x^{2}-2xz-z^{2}-\left(-x^{2}+2xz-z^{2}\right)=-z\left(2x^{2}+zy\right)
Use the distributive property to multiply -x+z by x-z and combine like terms.
-x^{2}-2xz-z^{2}+x^{2}-2xz+z^{2}=-z\left(2x^{2}+zy\right)
To find the opposite of -x^{2}+2xz-z^{2}, find the opposite of each term.
-2xz-z^{2}-2xz+z^{2}=-z\left(2x^{2}+zy\right)
Combine -x^{2} and x^{2} to get 0.
-4xz-z^{2}+z^{2}=-z\left(2x^{2}+zy\right)
Combine -2xz and -2xz to get -4xz.
-4xz=-z\left(2x^{2}+zy\right)
Combine -z^{2} and z^{2} to get 0.
-4xz=-2zx^{2}-yz^{2}
Use the distributive property to multiply -z by 2x^{2}+zy.
-2zx^{2}-yz^{2}=-4xz
Swap sides so that all variable terms are on the left hand side.
-yz^{2}=-4xz+2zx^{2}
Add 2zx^{2} to both sides.
\left(-z^{2}\right)y=2zx^{2}-4xz
The equation is in standard form.
\frac{\left(-z^{2}\right)y}{-z^{2}}=\frac{2xz\left(x-2\right)}{-z^{2}}
Divide both sides by -z^{2}.
y=\frac{2xz\left(x-2\right)}{-z^{2}}
Dividing by -z^{2} undoes the multiplication by -z^{2}.
y=-\frac{2x\left(x-2\right)}{z}
Divide 2xz\left(-2+x\right) by -z^{2}.
\left(-x-z\right)\left(x+z\right)-\left(-x+z\right)\left(x-z\right)=-z\left(2x^{2}+zy\right)
Multiply both sides of the equation by \left(x-z\right)\left(-x-z\right), the least common multiple of x-z,x+z,x^{2}-z^{2}.
-x^{2}-2xz-z^{2}-\left(-x+z\right)\left(x-z\right)=-z\left(2x^{2}+zy\right)
Use the distributive property to multiply -x-z by x+z and combine like terms.
-x^{2}-2xz-z^{2}-\left(-x^{2}+2xz-z^{2}\right)=-z\left(2x^{2}+zy\right)
Use the distributive property to multiply -x+z by x-z and combine like terms.
-x^{2}-2xz-z^{2}+x^{2}-2xz+z^{2}=-z\left(2x^{2}+zy\right)
To find the opposite of -x^{2}+2xz-z^{2}, find the opposite of each term.
-2xz-z^{2}-2xz+z^{2}=-z\left(2x^{2}+zy\right)
Combine -x^{2} and x^{2} to get 0.
-4xz-z^{2}+z^{2}=-z\left(2x^{2}+zy\right)
Combine -2xz and -2xz to get -4xz.
-4xz=-z\left(2x^{2}+zy\right)
Combine -z^{2} and z^{2} to get 0.
-4xz=-2zx^{2}-yz^{2}
Use the distributive property to multiply -z by 2x^{2}+zy.
-2zx^{2}-yz^{2}=-4xz
Swap sides so that all variable terms are on the left hand side.
-yz^{2}=-4xz+2zx^{2}
Add 2zx^{2} to both sides.
\left(-z^{2}\right)y=2zx^{2}-4xz
The equation is in standard form.
\frac{\left(-z^{2}\right)y}{-z^{2}}=\frac{2xz\left(x-2\right)}{-z^{2}}
Divide both sides by -z^{2}.
y=\frac{2xz\left(x-2\right)}{-z^{2}}
Dividing by -z^{2} undoes the multiplication by -z^{2}.
y=-\frac{2x\left(x-2\right)}{z}
Divide 2xz\left(-2+x\right) by -z^{2}.