Evaluate
-\frac{\left(-x+y-3\right)\left(x+y\right)}{6\left(x-y\right)}
Expand
\frac{-x^{2}-3x+y^{2}-3y}{6\left(y-x\right)}
Quiz
Algebra
5 problems similar to:
\frac{ x+y }{ 2x-2y } + \frac{ { x }^{ 2 } - { y }^{ 2 } }{ 6x-6y }
Share
Copied to clipboard
\frac{x+y}{2x-2y}+\frac{\left(x+y\right)\left(x-y\right)}{6\left(x-y\right)}
Factor the expressions that are not already factored in \frac{x^{2}-y^{2}}{6x-6y}.
\frac{x+y}{2x-2y}+\frac{x+y}{6}
Cancel out x-y in both numerator and denominator.
\frac{x+y}{2\left(x-y\right)}+\frac{x+y}{6}
Factor 2x-2y.
\frac{-3\left(x+y\right)}{6\left(-x+y\right)}+\frac{\left(x+y\right)\left(-x+y\right)}{6\left(-x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-y\right) and 6 is 6\left(-x+y\right). Multiply \frac{x+y}{2\left(x-y\right)} times \frac{-3}{-3}. Multiply \frac{x+y}{6} times \frac{-x+y}{-x+y}.
\frac{-3\left(x+y\right)+\left(x+y\right)\left(-x+y\right)}{6\left(-x+y\right)}
Since \frac{-3\left(x+y\right)}{6\left(-x+y\right)} and \frac{\left(x+y\right)\left(-x+y\right)}{6\left(-x+y\right)} have the same denominator, add them by adding their numerators.
\frac{-3x-3y-x^{2}+xy-yx+y^{2}}{6\left(-x+y\right)}
Do the multiplications in -3\left(x+y\right)+\left(x+y\right)\left(-x+y\right).
\frac{-3x-3y-x^{2}+y^{2}}{6\left(-x+y\right)}
Combine like terms in -3x-3y-x^{2}+xy-yx+y^{2}.
\frac{-3x-3y-x^{2}+y^{2}}{-6x+6y}
Expand 6\left(-x+y\right).
\frac{x+y}{2x-2y}+\frac{\left(x+y\right)\left(x-y\right)}{6\left(x-y\right)}
Factor the expressions that are not already factored in \frac{x^{2}-y^{2}}{6x-6y}.
\frac{x+y}{2x-2y}+\frac{x+y}{6}
Cancel out x-y in both numerator and denominator.
\frac{x+y}{2\left(x-y\right)}+\frac{x+y}{6}
Factor 2x-2y.
\frac{-3\left(x+y\right)}{6\left(-x+y\right)}+\frac{\left(x+y\right)\left(-x+y\right)}{6\left(-x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-y\right) and 6 is 6\left(-x+y\right). Multiply \frac{x+y}{2\left(x-y\right)} times \frac{-3}{-3}. Multiply \frac{x+y}{6} times \frac{-x+y}{-x+y}.
\frac{-3\left(x+y\right)+\left(x+y\right)\left(-x+y\right)}{6\left(-x+y\right)}
Since \frac{-3\left(x+y\right)}{6\left(-x+y\right)} and \frac{\left(x+y\right)\left(-x+y\right)}{6\left(-x+y\right)} have the same denominator, add them by adding their numerators.
\frac{-3x-3y-x^{2}+xy-yx+y^{2}}{6\left(-x+y\right)}
Do the multiplications in -3\left(x+y\right)+\left(x+y\right)\left(-x+y\right).
\frac{-3x-3y-x^{2}+y^{2}}{6\left(-x+y\right)}
Combine like terms in -3x-3y-x^{2}+xy-yx+y^{2}.
\frac{-3x-3y-x^{2}+y^{2}}{-6x+6y}
Expand 6\left(-x+y\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}