Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{x+y}{2x-2y}+\frac{\left(x+y\right)\left(x-y\right)}{6\left(x-y\right)}
Factor the expressions that are not already factored in \frac{x^{2}-y^{2}}{6x-6y}.
\frac{x+y}{2x-2y}+\frac{x+y}{6}
Cancel out x-y in both numerator and denominator.
\frac{x+y}{2\left(x-y\right)}+\frac{x+y}{6}
Factor 2x-2y.
\frac{-3\left(x+y\right)}{6\left(-x+y\right)}+\frac{\left(x+y\right)\left(-x+y\right)}{6\left(-x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-y\right) and 6 is 6\left(-x+y\right). Multiply \frac{x+y}{2\left(x-y\right)} times \frac{-3}{-3}. Multiply \frac{x+y}{6} times \frac{-x+y}{-x+y}.
\frac{-3\left(x+y\right)+\left(x+y\right)\left(-x+y\right)}{6\left(-x+y\right)}
Since \frac{-3\left(x+y\right)}{6\left(-x+y\right)} and \frac{\left(x+y\right)\left(-x+y\right)}{6\left(-x+y\right)} have the same denominator, add them by adding their numerators.
\frac{-3x-3y-x^{2}+xy-yx+y^{2}}{6\left(-x+y\right)}
Do the multiplications in -3\left(x+y\right)+\left(x+y\right)\left(-x+y\right).
\frac{-3x-3y-x^{2}+y^{2}}{6\left(-x+y\right)}
Combine like terms in -3x-3y-x^{2}+xy-yx+y^{2}.
\frac{-3x-3y-x^{2}+y^{2}}{-6x+6y}
Expand 6\left(-x+y\right).
\frac{x+y}{2x-2y}+\frac{\left(x+y\right)\left(x-y\right)}{6\left(x-y\right)}
Factor the expressions that are not already factored in \frac{x^{2}-y^{2}}{6x-6y}.
\frac{x+y}{2x-2y}+\frac{x+y}{6}
Cancel out x-y in both numerator and denominator.
\frac{x+y}{2\left(x-y\right)}+\frac{x+y}{6}
Factor 2x-2y.
\frac{-3\left(x+y\right)}{6\left(-x+y\right)}+\frac{\left(x+y\right)\left(-x+y\right)}{6\left(-x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-y\right) and 6 is 6\left(-x+y\right). Multiply \frac{x+y}{2\left(x-y\right)} times \frac{-3}{-3}. Multiply \frac{x+y}{6} times \frac{-x+y}{-x+y}.
\frac{-3\left(x+y\right)+\left(x+y\right)\left(-x+y\right)}{6\left(-x+y\right)}
Since \frac{-3\left(x+y\right)}{6\left(-x+y\right)} and \frac{\left(x+y\right)\left(-x+y\right)}{6\left(-x+y\right)} have the same denominator, add them by adding their numerators.
\frac{-3x-3y-x^{2}+xy-yx+y^{2}}{6\left(-x+y\right)}
Do the multiplications in -3\left(x+y\right)+\left(x+y\right)\left(-x+y\right).
\frac{-3x-3y-x^{2}+y^{2}}{6\left(-x+y\right)}
Combine like terms in -3x-3y-x^{2}+xy-yx+y^{2}.
\frac{-3x-3y-x^{2}+y^{2}}{-6x+6y}
Expand 6\left(-x+y\right).