Solve for x
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
Graph
Share
Copied to clipboard
x+5+\left(x+3\right)\left(-2\right)=3\left(5x+1\right)\left(x+3\right)-15x\left(x+3\right)
Variable x cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by x+3.
x+5-2x-6=3\left(5x+1\right)\left(x+3\right)-15x\left(x+3\right)
Use the distributive property to multiply x+3 by -2.
-x+5-6=3\left(5x+1\right)\left(x+3\right)-15x\left(x+3\right)
Combine x and -2x to get -x.
-x-1=3\left(5x+1\right)\left(x+3\right)-15x\left(x+3\right)
Subtract 6 from 5 to get -1.
-x-1=\left(15x+3\right)\left(x+3\right)-15x\left(x+3\right)
Use the distributive property to multiply 3 by 5x+1.
-x-1=15x^{2}+48x+9-15x\left(x+3\right)
Use the distributive property to multiply 15x+3 by x+3 and combine like terms.
-x-1=15x^{2}+48x+9-15x^{2}-45x
Use the distributive property to multiply -15x by x+3.
-x-1=48x+9-45x
Combine 15x^{2} and -15x^{2} to get 0.
-x-1=3x+9
Combine 48x and -45x to get 3x.
-x-1-3x=9
Subtract 3x from both sides.
-4x-1=9
Combine -x and -3x to get -4x.
-4x=9+1
Add 1 to both sides.
-4x=10
Add 9 and 1 to get 10.
x=\frac{10}{-4}
Divide both sides by -4.
x=-\frac{5}{2}
Reduce the fraction \frac{10}{-4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}