Solve for x
x = \frac{\sqrt{57}}{3} \approx 2.516611478
x = -\frac{\sqrt{57}}{3} \approx -2.516611478
Graph
Share
Copied to clipboard
\left(x-3\right)\left(x-1\right)\left(x+2\right)-\left(x^{2}-9\right)\left(x+1\right)=\left(x-1\right)\times 4
Variable x cannot be equal to any of the values -3,1,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x-1\right)\left(x+3\right), the least common multiple of x+3,x-1,\left(x+3\right)\left(x-3\right).
\left(x^{2}-4x+3\right)\left(x+2\right)-\left(x^{2}-9\right)\left(x+1\right)=\left(x-1\right)\times 4
Use the distributive property to multiply x-3 by x-1 and combine like terms.
x^{3}-2x^{2}-5x+6-\left(x^{2}-9\right)\left(x+1\right)=\left(x-1\right)\times 4
Use the distributive property to multiply x^{2}-4x+3 by x+2 and combine like terms.
x^{3}-2x^{2}-5x+6-\left(x^{3}+x^{2}-9x-9\right)=\left(x-1\right)\times 4
Use the distributive property to multiply x^{2}-9 by x+1.
x^{3}-2x^{2}-5x+6-x^{3}-x^{2}+9x+9=\left(x-1\right)\times 4
To find the opposite of x^{3}+x^{2}-9x-9, find the opposite of each term.
-2x^{2}-5x+6-x^{2}+9x+9=\left(x-1\right)\times 4
Combine x^{3} and -x^{3} to get 0.
-3x^{2}-5x+6+9x+9=\left(x-1\right)\times 4
Combine -2x^{2} and -x^{2} to get -3x^{2}.
-3x^{2}+4x+6+9=\left(x-1\right)\times 4
Combine -5x and 9x to get 4x.
-3x^{2}+4x+15=\left(x-1\right)\times 4
Add 6 and 9 to get 15.
-3x^{2}+4x+15=4x-4
Use the distributive property to multiply x-1 by 4.
-3x^{2}+4x+15-4x=-4
Subtract 4x from both sides.
-3x^{2}+15=-4
Combine 4x and -4x to get 0.
-3x^{2}=-4-15
Subtract 15 from both sides.
-3x^{2}=-19
Subtract 15 from -4 to get -19.
x^{2}=\frac{-19}{-3}
Divide both sides by -3.
x^{2}=\frac{19}{3}
Fraction \frac{-19}{-3} can be simplified to \frac{19}{3} by removing the negative sign from both the numerator and the denominator.
x=\frac{\sqrt{57}}{3} x=-\frac{\sqrt{57}}{3}
Take the square root of both sides of the equation.
\left(x-3\right)\left(x-1\right)\left(x+2\right)-\left(x^{2}-9\right)\left(x+1\right)=\left(x-1\right)\times 4
Variable x cannot be equal to any of the values -3,1,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x-1\right)\left(x+3\right), the least common multiple of x+3,x-1,\left(x+3\right)\left(x-3\right).
\left(x^{2}-4x+3\right)\left(x+2\right)-\left(x^{2}-9\right)\left(x+1\right)=\left(x-1\right)\times 4
Use the distributive property to multiply x-3 by x-1 and combine like terms.
x^{3}-2x^{2}-5x+6-\left(x^{2}-9\right)\left(x+1\right)=\left(x-1\right)\times 4
Use the distributive property to multiply x^{2}-4x+3 by x+2 and combine like terms.
x^{3}-2x^{2}-5x+6-\left(x^{3}+x^{2}-9x-9\right)=\left(x-1\right)\times 4
Use the distributive property to multiply x^{2}-9 by x+1.
x^{3}-2x^{2}-5x+6-x^{3}-x^{2}+9x+9=\left(x-1\right)\times 4
To find the opposite of x^{3}+x^{2}-9x-9, find the opposite of each term.
-2x^{2}-5x+6-x^{2}+9x+9=\left(x-1\right)\times 4
Combine x^{3} and -x^{3} to get 0.
-3x^{2}-5x+6+9x+9=\left(x-1\right)\times 4
Combine -2x^{2} and -x^{2} to get -3x^{2}.
-3x^{2}+4x+6+9=\left(x-1\right)\times 4
Combine -5x and 9x to get 4x.
-3x^{2}+4x+15=\left(x-1\right)\times 4
Add 6 and 9 to get 15.
-3x^{2}+4x+15=4x-4
Use the distributive property to multiply x-1 by 4.
-3x^{2}+4x+15-4x=-4
Subtract 4x from both sides.
-3x^{2}+15=-4
Combine 4x and -4x to get 0.
-3x^{2}+15+4=0
Add 4 to both sides.
-3x^{2}+19=0
Add 15 and 4 to get 19.
x=\frac{0±\sqrt{0^{2}-4\left(-3\right)\times 19}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 0 for b, and 19 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-3\right)\times 19}}{2\left(-3\right)}
Square 0.
x=\frac{0±\sqrt{12\times 19}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{0±\sqrt{228}}{2\left(-3\right)}
Multiply 12 times 19.
x=\frac{0±2\sqrt{57}}{2\left(-3\right)}
Take the square root of 228.
x=\frac{0±2\sqrt{57}}{-6}
Multiply 2 times -3.
x=-\frac{\sqrt{57}}{3}
Now solve the equation x=\frac{0±2\sqrt{57}}{-6} when ± is plus.
x=\frac{\sqrt{57}}{3}
Now solve the equation x=\frac{0±2\sqrt{57}}{-6} when ± is minus.
x=-\frac{\sqrt{57}}{3} x=\frac{\sqrt{57}}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}