Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x+1\right)\left(-x+2\right)}{\left(x+2\right)\left(-x+2\right)}+\frac{\left(2x-3\right)\left(x+2\right)}{\left(x+2\right)\left(-x+2\right)}+\frac{x^{2}+2x+4}{x^{2}-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and 2-x is \left(x+2\right)\left(-x+2\right). Multiply \frac{x+1}{x+2} times \frac{-x+2}{-x+2}. Multiply \frac{2x-3}{2-x} times \frac{x+2}{x+2}.
\frac{\left(x+1\right)\left(-x+2\right)+\left(2x-3\right)\left(x+2\right)}{\left(x+2\right)\left(-x+2\right)}+\frac{x^{2}+2x+4}{x^{2}-4}
Since \frac{\left(x+1\right)\left(-x+2\right)}{\left(x+2\right)\left(-x+2\right)} and \frac{\left(2x-3\right)\left(x+2\right)}{\left(x+2\right)\left(-x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+2x+2-x+2x^{2}+4x-3x-6}{\left(x+2\right)\left(-x+2\right)}+\frac{x^{2}+2x+4}{x^{2}-4}
Do the multiplications in \left(x+1\right)\left(-x+2\right)+\left(2x-3\right)\left(x+2\right).
\frac{x^{2}+2x-4}{\left(x+2\right)\left(-x+2\right)}+\frac{x^{2}+2x+4}{x^{2}-4}
Combine like terms in -x^{2}+2x+2-x+2x^{2}+4x-3x-6.
\frac{x^{2}+2x-4}{\left(x+2\right)\left(-x+2\right)}+\frac{x^{2}+2x+4}{\left(x-2\right)\left(x+2\right)}
Factor x^{2}-4.
\frac{-\left(x^{2}+2x-4\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x^{2}+2x+4}{\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+2\right)\left(-x+2\right) and \left(x-2\right)\left(x+2\right) is \left(x-2\right)\left(x+2\right). Multiply \frac{x^{2}+2x-4}{\left(x+2\right)\left(-x+2\right)} times \frac{-1}{-1}.
\frac{-\left(x^{2}+2x-4\right)+x^{2}+2x+4}{\left(x-2\right)\left(x+2\right)}
Since \frac{-\left(x^{2}+2x-4\right)}{\left(x-2\right)\left(x+2\right)} and \frac{x^{2}+2x+4}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}-2x+4+x^{2}+2x+4}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in -\left(x^{2}+2x-4\right)+x^{2}+2x+4.
\frac{8}{\left(x-2\right)\left(x+2\right)}
Combine like terms in -x^{2}-2x+4+x^{2}+2x+4.
\frac{8}{x^{2}-4}
Expand \left(x-2\right)\left(x+2\right).
\frac{\left(x+1\right)\left(-x+2\right)}{\left(x+2\right)\left(-x+2\right)}+\frac{\left(2x-3\right)\left(x+2\right)}{\left(x+2\right)\left(-x+2\right)}+\frac{x^{2}+2x+4}{x^{2}-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and 2-x is \left(x+2\right)\left(-x+2\right). Multiply \frac{x+1}{x+2} times \frac{-x+2}{-x+2}. Multiply \frac{2x-3}{2-x} times \frac{x+2}{x+2}.
\frac{\left(x+1\right)\left(-x+2\right)+\left(2x-3\right)\left(x+2\right)}{\left(x+2\right)\left(-x+2\right)}+\frac{x^{2}+2x+4}{x^{2}-4}
Since \frac{\left(x+1\right)\left(-x+2\right)}{\left(x+2\right)\left(-x+2\right)} and \frac{\left(2x-3\right)\left(x+2\right)}{\left(x+2\right)\left(-x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+2x+2-x+2x^{2}+4x-3x-6}{\left(x+2\right)\left(-x+2\right)}+\frac{x^{2}+2x+4}{x^{2}-4}
Do the multiplications in \left(x+1\right)\left(-x+2\right)+\left(2x-3\right)\left(x+2\right).
\frac{x^{2}+2x-4}{\left(x+2\right)\left(-x+2\right)}+\frac{x^{2}+2x+4}{x^{2}-4}
Combine like terms in -x^{2}+2x+2-x+2x^{2}+4x-3x-6.
\frac{x^{2}+2x-4}{\left(x+2\right)\left(-x+2\right)}+\frac{x^{2}+2x+4}{\left(x-2\right)\left(x+2\right)}
Factor x^{2}-4.
\frac{-\left(x^{2}+2x-4\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x^{2}+2x+4}{\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+2\right)\left(-x+2\right) and \left(x-2\right)\left(x+2\right) is \left(x-2\right)\left(x+2\right). Multiply \frac{x^{2}+2x-4}{\left(x+2\right)\left(-x+2\right)} times \frac{-1}{-1}.
\frac{-\left(x^{2}+2x-4\right)+x^{2}+2x+4}{\left(x-2\right)\left(x+2\right)}
Since \frac{-\left(x^{2}+2x-4\right)}{\left(x-2\right)\left(x+2\right)} and \frac{x^{2}+2x+4}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}-2x+4+x^{2}+2x+4}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in -\left(x^{2}+2x-4\right)+x^{2}+2x+4.
\frac{8}{\left(x-2\right)\left(x+2\right)}
Combine like terms in -x^{2}-2x+4+x^{2}+2x+4.
\frac{8}{x^{2}-4}
Expand \left(x-2\right)\left(x+2\right).