Solve for x
x=\frac{2}{3}\approx 0.666666667
Graph
Share
Copied to clipboard
\left(3x-1\right)\left(x+1\right)+\left(-1-3x\right)\left(2x-1\right)=x
Variable x cannot be equal to any of the values -\frac{1}{3},0,\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by x\left(3x-1\right)\left(3x+1\right), the least common multiple of 3x^{2}+x,x-3x^{2},9x^{2}-1.
3x^{2}+2x-1+\left(-1-3x\right)\left(2x-1\right)=x
Use the distributive property to multiply 3x-1 by x+1 and combine like terms.
3x^{2}+2x-1+x+1-6x^{2}=x
Use the distributive property to multiply -1-3x by 2x-1 and combine like terms.
3x^{2}+3x-1+1-6x^{2}=x
Combine 2x and x to get 3x.
3x^{2}+3x-6x^{2}=x
Add -1 and 1 to get 0.
-3x^{2}+3x=x
Combine 3x^{2} and -6x^{2} to get -3x^{2}.
-3x^{2}+3x-x=0
Subtract x from both sides.
-3x^{2}+2x=0
Combine 3x and -x to get 2x.
x\left(-3x+2\right)=0
Factor out x.
x=0 x=\frac{2}{3}
To find equation solutions, solve x=0 and -3x+2=0.
x=\frac{2}{3}
Variable x cannot be equal to 0.
\left(3x-1\right)\left(x+1\right)+\left(-1-3x\right)\left(2x-1\right)=x
Variable x cannot be equal to any of the values -\frac{1}{3},0,\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by x\left(3x-1\right)\left(3x+1\right), the least common multiple of 3x^{2}+x,x-3x^{2},9x^{2}-1.
3x^{2}+2x-1+\left(-1-3x\right)\left(2x-1\right)=x
Use the distributive property to multiply 3x-1 by x+1 and combine like terms.
3x^{2}+2x-1+x+1-6x^{2}=x
Use the distributive property to multiply -1-3x by 2x-1 and combine like terms.
3x^{2}+3x-1+1-6x^{2}=x
Combine 2x and x to get 3x.
3x^{2}+3x-6x^{2}=x
Add -1 and 1 to get 0.
-3x^{2}+3x=x
Combine 3x^{2} and -6x^{2} to get -3x^{2}.
-3x^{2}+3x-x=0
Subtract x from both sides.
-3x^{2}+2x=0
Combine 3x and -x to get 2x.
x=\frac{-2±\sqrt{2^{2}}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 2 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±2}{2\left(-3\right)}
Take the square root of 2^{2}.
x=\frac{-2±2}{-6}
Multiply 2 times -3.
x=\frac{0}{-6}
Now solve the equation x=\frac{-2±2}{-6} when ± is plus. Add -2 to 2.
x=0
Divide 0 by -6.
x=-\frac{4}{-6}
Now solve the equation x=\frac{-2±2}{-6} when ± is minus. Subtract 2 from -2.
x=\frac{2}{3}
Reduce the fraction \frac{-4}{-6} to lowest terms by extracting and canceling out 2.
x=0 x=\frac{2}{3}
The equation is now solved.
x=\frac{2}{3}
Variable x cannot be equal to 0.
\left(3x-1\right)\left(x+1\right)+\left(-1-3x\right)\left(2x-1\right)=x
Variable x cannot be equal to any of the values -\frac{1}{3},0,\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by x\left(3x-1\right)\left(3x+1\right), the least common multiple of 3x^{2}+x,x-3x^{2},9x^{2}-1.
3x^{2}+2x-1+\left(-1-3x\right)\left(2x-1\right)=x
Use the distributive property to multiply 3x-1 by x+1 and combine like terms.
3x^{2}+2x-1+x+1-6x^{2}=x
Use the distributive property to multiply -1-3x by 2x-1 and combine like terms.
3x^{2}+3x-1+1-6x^{2}=x
Combine 2x and x to get 3x.
3x^{2}+3x-6x^{2}=x
Add -1 and 1 to get 0.
-3x^{2}+3x=x
Combine 3x^{2} and -6x^{2} to get -3x^{2}.
-3x^{2}+3x-x=0
Subtract x from both sides.
-3x^{2}+2x=0
Combine 3x and -x to get 2x.
\frac{-3x^{2}+2x}{-3}=\frac{0}{-3}
Divide both sides by -3.
x^{2}+\frac{2}{-3}x=\frac{0}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{2}{3}x=\frac{0}{-3}
Divide 2 by -3.
x^{2}-\frac{2}{3}x=0
Divide 0 by -3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{1}{3}\right)^{2}=\frac{1}{9}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{1}{3} x-\frac{1}{3}=-\frac{1}{3}
Simplify.
x=\frac{2}{3} x=0
Add \frac{1}{3} to both sides of the equation.
x=\frac{2}{3}
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}