Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+1}{x\left(x-2\right)}+\frac{x+1}{x\left(x+2\right)}-\frac{2x}{x^{2}-4}
Factor x^{2}-2x. Factor x^{2}+2x.
\frac{\left(x+1\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{\left(x+1\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2x}{x^{2}-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-2\right) and x\left(x+2\right) is x\left(x-2\right)\left(x+2\right). Multiply \frac{x+1}{x\left(x-2\right)} times \frac{x+2}{x+2}. Multiply \frac{x+1}{x\left(x+2\right)} times \frac{x-2}{x-2}.
\frac{\left(x+1\right)\left(x+2\right)+\left(x+1\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2x}{x^{2}-4}
Since \frac{\left(x+1\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)} and \frac{\left(x+1\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+2x+x+2+x^{2}-2x+x-2}{x\left(x-2\right)\left(x+2\right)}-\frac{2x}{x^{2}-4}
Do the multiplications in \left(x+1\right)\left(x+2\right)+\left(x+1\right)\left(x-2\right).
\frac{2x^{2}+2x}{x\left(x-2\right)\left(x+2\right)}-\frac{2x}{x^{2}-4}
Combine like terms in x^{2}+2x+x+2+x^{2}-2x+x-2.
\frac{2x\left(x+1\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2x}{x^{2}-4}
Factor the expressions that are not already factored in \frac{2x^{2}+2x}{x\left(x-2\right)\left(x+2\right)}.
\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2x}{x^{2}-4}
Cancel out x in both numerator and denominator.
\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2x}{\left(x-2\right)\left(x+2\right)}
Factor x^{2}-4.
\frac{2\left(x+1\right)-2x}{\left(x-2\right)\left(x+2\right)}
Since \frac{2\left(x+1\right)}{\left(x-2\right)\left(x+2\right)} and \frac{2x}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x+2-2x}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in 2\left(x+1\right)-2x.
\frac{2}{\left(x-2\right)\left(x+2\right)}
Combine like terms in 2x+2-2x.
\frac{2}{x^{2}-4}
Expand \left(x-2\right)\left(x+2\right).
\frac{x+1}{x\left(x-2\right)}+\frac{x+1}{x\left(x+2\right)}-\frac{2x}{x^{2}-4}
Factor x^{2}-2x. Factor x^{2}+2x.
\frac{\left(x+1\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{\left(x+1\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2x}{x^{2}-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-2\right) and x\left(x+2\right) is x\left(x-2\right)\left(x+2\right). Multiply \frac{x+1}{x\left(x-2\right)} times \frac{x+2}{x+2}. Multiply \frac{x+1}{x\left(x+2\right)} times \frac{x-2}{x-2}.
\frac{\left(x+1\right)\left(x+2\right)+\left(x+1\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2x}{x^{2}-4}
Since \frac{\left(x+1\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)} and \frac{\left(x+1\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+2x+x+2+x^{2}-2x+x-2}{x\left(x-2\right)\left(x+2\right)}-\frac{2x}{x^{2}-4}
Do the multiplications in \left(x+1\right)\left(x+2\right)+\left(x+1\right)\left(x-2\right).
\frac{2x^{2}+2x}{x\left(x-2\right)\left(x+2\right)}-\frac{2x}{x^{2}-4}
Combine like terms in x^{2}+2x+x+2+x^{2}-2x+x-2.
\frac{2x\left(x+1\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2x}{x^{2}-4}
Factor the expressions that are not already factored in \frac{2x^{2}+2x}{x\left(x-2\right)\left(x+2\right)}.
\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2x}{x^{2}-4}
Cancel out x in both numerator and denominator.
\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2x}{\left(x-2\right)\left(x+2\right)}
Factor x^{2}-4.
\frac{2\left(x+1\right)-2x}{\left(x-2\right)\left(x+2\right)}
Since \frac{2\left(x+1\right)}{\left(x-2\right)\left(x+2\right)} and \frac{2x}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x+2-2x}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in 2\left(x+1\right)-2x.
\frac{2}{\left(x-2\right)\left(x+2\right)}
Combine like terms in 2x+2-2x.
\frac{2}{x^{2}-4}
Expand \left(x-2\right)\left(x+2\right).