Evaluate
\frac{2\left(y-x\right)}{\left(1-y\right)\left(x-1\right)}
Expand
-\frac{2\left(y-x\right)}{\left(x-1\right)\left(y-1\right)}
Share
Copied to clipboard
\frac{-\left(x\left(y-1\right)+y\left(1-x\right)\right)}{\left(x-1\right)\left(y-1\right)}-\frac{y-x}{\left(x-1\right)\left(y-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(1-y\right) and \left(x-1\right)\left(y-1\right) is \left(x-1\right)\left(y-1\right). Multiply \frac{x\left(y-1\right)+y\left(1-x\right)}{\left(x-1\right)\left(1-y\right)} times \frac{-1}{-1}.
\frac{-\left(x\left(y-1\right)+y\left(1-x\right)\right)-\left(y-x\right)}{\left(x-1\right)\left(y-1\right)}
Since \frac{-\left(x\left(y-1\right)+y\left(1-x\right)\right)}{\left(x-1\right)\left(y-1\right)} and \frac{y-x}{\left(x-1\right)\left(y-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-yx+x-y+yx-y+x}{\left(x-1\right)\left(y-1\right)}
Do the multiplications in -\left(x\left(y-1\right)+y\left(1-x\right)\right)-\left(y-x\right).
\frac{2x-2y}{\left(x-1\right)\left(y-1\right)}
Combine like terms in -yx+x-y+yx-y+x.
\frac{2x-2y}{xy-x-y+1}
Expand \left(x-1\right)\left(y-1\right).
\frac{-\left(x\left(y-1\right)+y\left(1-x\right)\right)}{\left(x-1\right)\left(y-1\right)}-\frac{y-x}{\left(x-1\right)\left(y-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(1-y\right) and \left(x-1\right)\left(y-1\right) is \left(x-1\right)\left(y-1\right). Multiply \frac{x\left(y-1\right)+y\left(1-x\right)}{\left(x-1\right)\left(1-y\right)} times \frac{-1}{-1}.
\frac{-\left(x\left(y-1\right)+y\left(1-x\right)\right)-\left(y-x\right)}{\left(x-1\right)\left(y-1\right)}
Since \frac{-\left(x\left(y-1\right)+y\left(1-x\right)\right)}{\left(x-1\right)\left(y-1\right)} and \frac{y-x}{\left(x-1\right)\left(y-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-yx+x-y+yx-y+x}{\left(x-1\right)\left(y-1\right)}
Do the multiplications in -\left(x\left(y-1\right)+y\left(1-x\right)\right)-\left(y-x\right).
\frac{2x-2y}{\left(x-1\right)\left(y-1\right)}
Combine like terms in -yx+x-y+yx-y+x.
\frac{2x-2y}{xy-x-y+1}
Expand \left(x-1\right)\left(y-1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}