Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(x+1\right)=3846\left(x-1\right)
Multiply both sides of the equation by 2.
x^{2}+x=3846\left(x-1\right)
Use the distributive property to multiply x by x+1.
x^{2}+x=3846x-3846
Use the distributive property to multiply 3846 by x-1.
x^{2}+x-3846x=-3846
Subtract 3846x from both sides.
x^{2}-3845x=-3846
Combine x and -3846x to get -3845x.
x^{2}-3845x+3846=0
Add 3846 to both sides.
x=\frac{-\left(-3845\right)±\sqrt{\left(-3845\right)^{2}-4\times 3846}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3845 for b, and 3846 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3845\right)±\sqrt{14784025-4\times 3846}}{2}
Square -3845.
x=\frac{-\left(-3845\right)±\sqrt{14784025-15384}}{2}
Multiply -4 times 3846.
x=\frac{-\left(-3845\right)±\sqrt{14768641}}{2}
Add 14784025 to -15384.
x=\frac{3845±\sqrt{14768641}}{2}
The opposite of -3845 is 3845.
x=\frac{\sqrt{14768641}+3845}{2}
Now solve the equation x=\frac{3845±\sqrt{14768641}}{2} when ± is plus. Add 3845 to \sqrt{14768641}.
x=\frac{3845-\sqrt{14768641}}{2}
Now solve the equation x=\frac{3845±\sqrt{14768641}}{2} when ± is minus. Subtract \sqrt{14768641} from 3845.
x=\frac{\sqrt{14768641}+3845}{2} x=\frac{3845-\sqrt{14768641}}{2}
The equation is now solved.
x\left(x+1\right)=3846\left(x-1\right)
Multiply both sides of the equation by 2.
x^{2}+x=3846\left(x-1\right)
Use the distributive property to multiply x by x+1.
x^{2}+x=3846x-3846
Use the distributive property to multiply 3846 by x-1.
x^{2}+x-3846x=-3846
Subtract 3846x from both sides.
x^{2}-3845x=-3846
Combine x and -3846x to get -3845x.
x^{2}-3845x+\left(-\frac{3845}{2}\right)^{2}=-3846+\left(-\frac{3845}{2}\right)^{2}
Divide -3845, the coefficient of the x term, by 2 to get -\frac{3845}{2}. Then add the square of -\frac{3845}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3845x+\frac{14784025}{4}=-3846+\frac{14784025}{4}
Square -\frac{3845}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3845x+\frac{14784025}{4}=\frac{14768641}{4}
Add -3846 to \frac{14784025}{4}.
\left(x-\frac{3845}{2}\right)^{2}=\frac{14768641}{4}
Factor x^{2}-3845x+\frac{14784025}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3845}{2}\right)^{2}}=\sqrt{\frac{14768641}{4}}
Take the square root of both sides of the equation.
x-\frac{3845}{2}=\frac{\sqrt{14768641}}{2} x-\frac{3845}{2}=-\frac{\sqrt{14768641}}{2}
Simplify.
x=\frac{\sqrt{14768641}+3845}{2} x=\frac{3845-\sqrt{14768641}}{2}
Add \frac{3845}{2} to both sides of the equation.