Solve for x
x = \frac{\sqrt{14768641} + 3845}{2} \approx 3843.999479573
x = \frac{3845 - \sqrt{14768641}}{2} \approx 1.000520427
Graph
Share
Copied to clipboard
x\left(x+1\right)=3846\left(x-1\right)
Multiply both sides of the equation by 2.
x^{2}+x=3846\left(x-1\right)
Use the distributive property to multiply x by x+1.
x^{2}+x=3846x-3846
Use the distributive property to multiply 3846 by x-1.
x^{2}+x-3846x=-3846
Subtract 3846x from both sides.
x^{2}-3845x=-3846
Combine x and -3846x to get -3845x.
x^{2}-3845x+3846=0
Add 3846 to both sides.
x=\frac{-\left(-3845\right)±\sqrt{\left(-3845\right)^{2}-4\times 3846}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3845 for b, and 3846 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3845\right)±\sqrt{14784025-4\times 3846}}{2}
Square -3845.
x=\frac{-\left(-3845\right)±\sqrt{14784025-15384}}{2}
Multiply -4 times 3846.
x=\frac{-\left(-3845\right)±\sqrt{14768641}}{2}
Add 14784025 to -15384.
x=\frac{3845±\sqrt{14768641}}{2}
The opposite of -3845 is 3845.
x=\frac{\sqrt{14768641}+3845}{2}
Now solve the equation x=\frac{3845±\sqrt{14768641}}{2} when ± is plus. Add 3845 to \sqrt{14768641}.
x=\frac{3845-\sqrt{14768641}}{2}
Now solve the equation x=\frac{3845±\sqrt{14768641}}{2} when ± is minus. Subtract \sqrt{14768641} from 3845.
x=\frac{\sqrt{14768641}+3845}{2} x=\frac{3845-\sqrt{14768641}}{2}
The equation is now solved.
x\left(x+1\right)=3846\left(x-1\right)
Multiply both sides of the equation by 2.
x^{2}+x=3846\left(x-1\right)
Use the distributive property to multiply x by x+1.
x^{2}+x=3846x-3846
Use the distributive property to multiply 3846 by x-1.
x^{2}+x-3846x=-3846
Subtract 3846x from both sides.
x^{2}-3845x=-3846
Combine x and -3846x to get -3845x.
x^{2}-3845x+\left(-\frac{3845}{2}\right)^{2}=-3846+\left(-\frac{3845}{2}\right)^{2}
Divide -3845, the coefficient of the x term, by 2 to get -\frac{3845}{2}. Then add the square of -\frac{3845}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3845x+\frac{14784025}{4}=-3846+\frac{14784025}{4}
Square -\frac{3845}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3845x+\frac{14784025}{4}=\frac{14768641}{4}
Add -3846 to \frac{14784025}{4}.
\left(x-\frac{3845}{2}\right)^{2}=\frac{14768641}{4}
Factor x^{2}-3845x+\frac{14784025}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3845}{2}\right)^{2}}=\sqrt{\frac{14768641}{4}}
Take the square root of both sides of the equation.
x-\frac{3845}{2}=\frac{\sqrt{14768641}}{2} x-\frac{3845}{2}=-\frac{\sqrt{14768641}}{2}
Simplify.
x=\frac{\sqrt{14768641}+3845}{2} x=\frac{3845-\sqrt{14768641}}{2}
Add \frac{3845}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}