Solve for y
y=-\frac{x\left(x+1\right)}{x^{2}-4}
|x|\neq 2
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{16y^{2}+16y+1}-1}{2\left(y+1\right)}\text{; }x=-\frac{\sqrt{16y^{2}+16y+1}+1}{2\left(y+1\right)}\text{, }&\left(y\neq -1\text{ and }y\leq -\frac{\sqrt{3}}{4}-\frac{1}{2}\right)\text{ or }y\geq \frac{\sqrt{3}}{4}-\frac{1}{2}\\x=-4\text{, }&y=-1\end{matrix}\right.
Graph
Share
Copied to clipboard
x\left(x+1\right)=y\left(x-2\right)\left(-x-2\right)
Multiply both sides of the equation by \left(x-2\right)\left(-x-2\right).
x^{2}+x=y\left(x-2\right)\left(-x-2\right)
Use the distributive property to multiply x by x+1.
x^{2}+x=\left(yx-2y\right)\left(-x-2\right)
Use the distributive property to multiply y by x-2.
x^{2}+x=-yx^{2}+4y
Use the distributive property to multiply yx-2y by -x-2 and combine like terms.
-yx^{2}+4y=x^{2}+x
Swap sides so that all variable terms are on the left hand side.
\left(-x^{2}+4\right)y=x^{2}+x
Combine all terms containing y.
\left(4-x^{2}\right)y=x^{2}+x
The equation is in standard form.
\frac{\left(4-x^{2}\right)y}{4-x^{2}}=\frac{x\left(x+1\right)}{4-x^{2}}
Divide both sides by -x^{2}+4.
y=\frac{x\left(x+1\right)}{4-x^{2}}
Dividing by -x^{2}+4 undoes the multiplication by -x^{2}+4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}