Solve for x
x = \frac{109}{8} = 13\frac{5}{8} = 13.625
Graph
Share
Copied to clipboard
x\left(4x-62\right)+51=4x\left(x+1\right)+\left(x+1\right)\left(-62\right)+\left(x+1\right)\times 4
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by x+1.
4x^{2}-62x+51=4x\left(x+1\right)+\left(x+1\right)\left(-62\right)+\left(x+1\right)\times 4
Use the distributive property to multiply x by 4x-62.
4x^{2}-62x+51=4x^{2}+4x+\left(x+1\right)\left(-62\right)+\left(x+1\right)\times 4
Use the distributive property to multiply 4x by x+1.
4x^{2}-62x+51=4x^{2}+4x-62x-62+\left(x+1\right)\times 4
Use the distributive property to multiply x+1 by -62.
4x^{2}-62x+51=4x^{2}-58x-62+\left(x+1\right)\times 4
Combine 4x and -62x to get -58x.
4x^{2}-62x+51=4x^{2}-58x-62+4x+4
Use the distributive property to multiply x+1 by 4.
4x^{2}-62x+51=4x^{2}-54x-62+4
Combine -58x and 4x to get -54x.
4x^{2}-62x+51=4x^{2}-54x-58
Add -62 and 4 to get -58.
4x^{2}-62x+51-4x^{2}=-54x-58
Subtract 4x^{2} from both sides.
-62x+51=-54x-58
Combine 4x^{2} and -4x^{2} to get 0.
-62x+51+54x=-58
Add 54x to both sides.
-8x+51=-58
Combine -62x and 54x to get -8x.
-8x=-58-51
Subtract 51 from both sides.
-8x=-109
Subtract 51 from -58 to get -109.
x=\frac{-109}{-8}
Divide both sides by -8.
x=\frac{109}{8}
Fraction \frac{-109}{-8} can be simplified to \frac{109}{8} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}