Solve for x
x\in \left(-\infty,7\right)\cup \left(\frac{35}{4},\infty\right)
Graph
Share
Copied to clipboard
x-7>0 x-7<0
Denominator x-7 cannot be zero since division by zero is not defined. There are two cases.
x>7
Consider the case when x-7 is positive. Move -7 to the right hand side.
x<5\left(x-7\right)
The initial inequality does not change the direction when multiplied by x-7 for x-7>0.
x<5x-35
Multiply out the right hand side.
x-5x<-35
Move the terms containing x to the left hand side and all other terms to the right hand side.
-4x<-35
Combine like terms.
x>\frac{35}{4}
Divide both sides by -4. Since -4 is negative, the inequality direction is changed.
x>\frac{35}{4}
Consider condition x>7 specified above. The result remains the same.
x<7
Now consider the case when x-7 is negative. Move -7 to the right hand side.
x>5\left(x-7\right)
The initial inequality changes the direction when multiplied by x-7 for x-7<0.
x>5x-35
Multiply out the right hand side.
x-5x>-35
Move the terms containing x to the left hand side and all other terms to the right hand side.
-4x>-35
Combine like terms.
x<\frac{35}{4}
Divide both sides by -4. Since -4 is negative, the inequality direction is changed.
x<7
Consider condition x<7 specified above.
x\in \left(-\infty,7\right)\cup \left(\frac{35}{4},\infty\right)
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}