Solve for x
x=4
Graph
Share
Copied to clipboard
\left(x-2\right)x+\left(x-2\right)^{2}\left(-1\right)=4
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)^{2}, the least common multiple of x-2,x^{2}-4x+4.
x^{2}-2x+\left(x-2\right)^{2}\left(-1\right)=4
Use the distributive property to multiply x-2 by x.
x^{2}-2x+\left(x^{2}-4x+4\right)\left(-1\right)=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-2x-x^{2}+4x-4=4
Use the distributive property to multiply x^{2}-4x+4 by -1.
-2x+4x-4=4
Combine x^{2} and -x^{2} to get 0.
2x-4=4
Combine -2x and 4x to get 2x.
2x=4+4
Add 4 to both sides.
2x=8
Add 4 and 4 to get 8.
x=\frac{8}{2}
Divide both sides by 2.
x=4
Divide 8 by 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}