Evaluate
-\frac{2x}{x^{2}-b^{2}}
Expand
-\frac{2x}{x^{2}-b^{2}}
Graph
Share
Copied to clipboard
\frac{x\left(x-b\right)}{b\left(x+b\right)\left(x-b\right)}-\frac{x\left(x+b\right)}{b\left(x+b\right)\left(x-b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b\left(x+b\right) and b\left(x-b\right) is b\left(x+b\right)\left(x-b\right). Multiply \frac{x}{b\left(x+b\right)} times \frac{x-b}{x-b}. Multiply \frac{x}{b\left(x-b\right)} times \frac{x+b}{x+b}.
\frac{x\left(x-b\right)-x\left(x+b\right)}{b\left(x+b\right)\left(x-b\right)}
Since \frac{x\left(x-b\right)}{b\left(x+b\right)\left(x-b\right)} and \frac{x\left(x+b\right)}{b\left(x+b\right)\left(x-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-xb-x^{2}-xb}{b\left(x+b\right)\left(x-b\right)}
Do the multiplications in x\left(x-b\right)-x\left(x+b\right).
\frac{-2xb}{b\left(x+b\right)\left(x-b\right)}
Combine like terms in x^{2}-xb-x^{2}-xb.
\frac{-2x}{\left(x+b\right)\left(x-b\right)}
Cancel out b in both numerator and denominator.
\frac{-2x}{x^{2}-b^{2}}
Expand \left(x+b\right)\left(x-b\right).
\frac{x\left(x-b\right)}{b\left(x+b\right)\left(x-b\right)}-\frac{x\left(x+b\right)}{b\left(x+b\right)\left(x-b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b\left(x+b\right) and b\left(x-b\right) is b\left(x+b\right)\left(x-b\right). Multiply \frac{x}{b\left(x+b\right)} times \frac{x-b}{x-b}. Multiply \frac{x}{b\left(x-b\right)} times \frac{x+b}{x+b}.
\frac{x\left(x-b\right)-x\left(x+b\right)}{b\left(x+b\right)\left(x-b\right)}
Since \frac{x\left(x-b\right)}{b\left(x+b\right)\left(x-b\right)} and \frac{x\left(x+b\right)}{b\left(x+b\right)\left(x-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-xb-x^{2}-xb}{b\left(x+b\right)\left(x-b\right)}
Do the multiplications in x\left(x-b\right)-x\left(x+b\right).
\frac{-2xb}{b\left(x+b\right)\left(x-b\right)}
Combine like terms in x^{2}-xb-x^{2}-xb.
\frac{-2x}{\left(x+b\right)\left(x-b\right)}
Cancel out b in both numerator and denominator.
\frac{-2x}{x^{2}-b^{2}}
Expand \left(x+b\right)\left(x-b\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}