Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x\left(x-b\right)}{b\left(x+b\right)\left(x-b\right)}-\frac{x\left(x+b\right)}{b\left(x+b\right)\left(x-b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b\left(x+b\right) and b\left(x-b\right) is b\left(x+b\right)\left(x-b\right). Multiply \frac{x}{b\left(x+b\right)} times \frac{x-b}{x-b}. Multiply \frac{x}{b\left(x-b\right)} times \frac{x+b}{x+b}.
\frac{x\left(x-b\right)-x\left(x+b\right)}{b\left(x+b\right)\left(x-b\right)}
Since \frac{x\left(x-b\right)}{b\left(x+b\right)\left(x-b\right)} and \frac{x\left(x+b\right)}{b\left(x+b\right)\left(x-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-xb-x^{2}-xb}{b\left(x+b\right)\left(x-b\right)}
Do the multiplications in x\left(x-b\right)-x\left(x+b\right).
\frac{-2xb}{b\left(x+b\right)\left(x-b\right)}
Combine like terms in x^{2}-xb-x^{2}-xb.
\frac{-2x}{\left(x+b\right)\left(x-b\right)}
Cancel out b in both numerator and denominator.
\frac{-2x}{x^{2}-b^{2}}
Expand \left(x+b\right)\left(x-b\right).
\frac{x\left(x-b\right)}{b\left(x+b\right)\left(x-b\right)}-\frac{x\left(x+b\right)}{b\left(x+b\right)\left(x-b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b\left(x+b\right) and b\left(x-b\right) is b\left(x+b\right)\left(x-b\right). Multiply \frac{x}{b\left(x+b\right)} times \frac{x-b}{x-b}. Multiply \frac{x}{b\left(x-b\right)} times \frac{x+b}{x+b}.
\frac{x\left(x-b\right)-x\left(x+b\right)}{b\left(x+b\right)\left(x-b\right)}
Since \frac{x\left(x-b\right)}{b\left(x+b\right)\left(x-b\right)} and \frac{x\left(x+b\right)}{b\left(x+b\right)\left(x-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-xb-x^{2}-xb}{b\left(x+b\right)\left(x-b\right)}
Do the multiplications in x\left(x-b\right)-x\left(x+b\right).
\frac{-2xb}{b\left(x+b\right)\left(x-b\right)}
Combine like terms in x^{2}-xb-x^{2}-xb.
\frac{-2x}{\left(x+b\right)\left(x-b\right)}
Cancel out b in both numerator and denominator.
\frac{-2x}{x^{2}-b^{2}}
Expand \left(x+b\right)\left(x-b\right).