Solve for x
x=-\frac{6y}{5}-2z+\frac{49}{5}
Solve for y
y=-\frac{5x}{6}-\frac{5z}{3}+\frac{49}{6}
Share
Copied to clipboard
5x+6y+10z=49
Multiply both sides of the equation by 30, the least common multiple of 6,5,3,30.
5x+10z=49-6y
Subtract 6y from both sides.
5x=49-6y-10z
Subtract 10z from both sides.
5x=49-10z-6y
The equation is in standard form.
\frac{5x}{5}=\frac{49-10z-6y}{5}
Divide both sides by 5.
x=\frac{49-10z-6y}{5}
Dividing by 5 undoes the multiplication by 5.
x=-\frac{6y}{5}-2z+\frac{49}{5}
Divide 49-6y-10z by 5.
5x+6y+10z=49
Multiply both sides of the equation by 30, the least common multiple of 6,5,3,30.
6y+10z=49-5x
Subtract 5x from both sides.
6y=49-5x-10z
Subtract 10z from both sides.
6y=49-10z-5x
The equation is in standard form.
\frac{6y}{6}=\frac{49-10z-5x}{6}
Divide both sides by 6.
y=\frac{49-10z-5x}{6}
Dividing by 6 undoes the multiplication by 6.
y=-\frac{5x}{6}-\frac{5z}{3}+\frac{49}{6}
Divide 49-5x-10z by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}