Solve for x
x=25\left(\sqrt{3}-1\right)\approx 18.301270189
Graph
Share
Copied to clipboard
-3x=\left(x-50\right)\sqrt{3}
Variable x cannot be equal to 50 since division by zero is not defined. Multiply both sides of the equation by 3\left(x-50\right), the least common multiple of 50-x,3.
-3x=x\sqrt{3}-50\sqrt{3}
Use the distributive property to multiply x-50 by \sqrt{3}.
-3x-x\sqrt{3}=-50\sqrt{3}
Subtract x\sqrt{3} from both sides.
-\sqrt{3}x-3x=-50\sqrt{3}
Reorder the terms.
\left(-\sqrt{3}-3\right)x=-50\sqrt{3}
Combine all terms containing x.
\frac{\left(-\sqrt{3}-3\right)x}{-\sqrt{3}-3}=-\frac{50\sqrt{3}}{-\sqrt{3}-3}
Divide both sides by -\sqrt{3}-3.
x=-\frac{50\sqrt{3}}{-\sqrt{3}-3}
Dividing by -\sqrt{3}-3 undoes the multiplication by -\sqrt{3}-3.
x=25\sqrt{3}-25
Divide -50\sqrt{3} by -\sqrt{3}-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}