Solve for x
x\geq -\frac{17}{18}
Graph
Share
Copied to clipboard
2x-\left(2x-1\right)\leq 18\left(x+1\right)
Multiply both sides of the equation by 6, the least common multiple of 3,6. Since 6 is positive, the inequality direction remains the same.
2x-2x-\left(-1\right)\leq 18\left(x+1\right)
To find the opposite of 2x-1, find the opposite of each term.
2x-2x+1\leq 18\left(x+1\right)
The opposite of -1 is 1.
1\leq 18\left(x+1\right)
Combine 2x and -2x to get 0.
1\leq 18x+18
Use the distributive property to multiply 18 by x+1.
18x+18\geq 1
Swap sides so that all variable terms are on the left hand side. This changes the sign direction.
18x\geq 1-18
Subtract 18 from both sides.
18x\geq -17
Subtract 18 from 1 to get -17.
x\geq -\frac{17}{18}
Divide both sides by 18. Since 18 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}