Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x\times 9}{3}+\frac{\frac{x}{25}}{100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Divide x by \frac{3}{9} by multiplying x by the reciprocal of \frac{3}{9}.
x\times 3+\frac{\frac{x}{25}}{100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Divide x\times 9 by 3 to get x\times 3.
x\times 3+\frac{x}{25\times 100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Express \frac{\frac{x}{25}}{100} as a single fraction.
x\times 3+\frac{x}{2500}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Multiply 25 and 100 to get 2500.
\frac{7501}{2500}x+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Combine x\times 3 and \frac{x}{2500} to get \frac{7501}{2500}x.
\frac{7501}{2500}x+\frac{x}{2\times 10}+\frac{\frac{x}{15}}{90}
Express \frac{\frac{x}{2}}{10} as a single fraction.
\frac{7501}{2500}x+\frac{x}{20}+\frac{\frac{x}{15}}{90}
Multiply 2 and 10 to get 20.
\frac{3813}{1250}x+\frac{\frac{x}{15}}{90}
Combine \frac{7501}{2500}x and \frac{x}{20} to get \frac{3813}{1250}x.
\frac{3813}{1250}x+\frac{x}{15\times 90}
Express \frac{\frac{x}{15}}{90} as a single fraction.
\frac{3813}{1250}x+\frac{x}{1350}
Multiply 15 and 90 to get 1350.
\frac{51488}{16875}x
Combine \frac{3813}{1250}x and \frac{x}{1350} to get \frac{51488}{16875}x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\times 9}{3}+\frac{\frac{x}{25}}{100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Divide x by \frac{3}{9} by multiplying x by the reciprocal of \frac{3}{9}.
\frac{\mathrm{d}}{\mathrm{d}x}(x\times 3+\frac{\frac{x}{25}}{100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Divide x\times 9 by 3 to get x\times 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x\times 3+\frac{x}{25\times 100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Express \frac{\frac{x}{25}}{100} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(x\times 3+\frac{x}{2500}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Multiply 25 and 100 to get 2500.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7501}{2500}x+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Combine x\times 3 and \frac{x}{2500} to get \frac{7501}{2500}x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7501}{2500}x+\frac{x}{2\times 10}+\frac{\frac{x}{15}}{90})
Express \frac{\frac{x}{2}}{10} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7501}{2500}x+\frac{x}{20}+\frac{\frac{x}{15}}{90})
Multiply 2 and 10 to get 20.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3813}{1250}x+\frac{\frac{x}{15}}{90})
Combine \frac{7501}{2500}x and \frac{x}{20} to get \frac{3813}{1250}x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3813}{1250}x+\frac{x}{15\times 90})
Express \frac{\frac{x}{15}}{90} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3813}{1250}x+\frac{x}{1350})
Multiply 15 and 90 to get 1350.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{51488}{16875}x)
Combine \frac{3813}{1250}x and \frac{x}{1350} to get \frac{51488}{16875}x.
\frac{51488}{16875}x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{51488}{16875}x^{0}
Subtract 1 from 1.
\frac{51488}{16875}\times 1
For any term t except 0, t^{0}=1.
\frac{51488}{16875}
For any term t, t\times 1=t and 1t=t.