Evaluate
\frac{51488x}{16875}
Differentiate w.r.t. x
\frac{51488}{16875} = 3\frac{863}{16875} = 3.051140740740741
Graph
Share
Copied to clipboard
\frac{x\times 9}{3}+\frac{\frac{x}{25}}{100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Divide x by \frac{3}{9} by multiplying x by the reciprocal of \frac{3}{9}.
x\times 3+\frac{\frac{x}{25}}{100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Divide x\times 9 by 3 to get x\times 3.
x\times 3+\frac{x}{25\times 100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Express \frac{\frac{x}{25}}{100} as a single fraction.
x\times 3+\frac{x}{2500}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Multiply 25 and 100 to get 2500.
\frac{7501}{2500}x+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Combine x\times 3 and \frac{x}{2500} to get \frac{7501}{2500}x.
\frac{7501}{2500}x+\frac{x}{2\times 10}+\frac{\frac{x}{15}}{90}
Express \frac{\frac{x}{2}}{10} as a single fraction.
\frac{7501}{2500}x+\frac{x}{20}+\frac{\frac{x}{15}}{90}
Multiply 2 and 10 to get 20.
\frac{3813}{1250}x+\frac{\frac{x}{15}}{90}
Combine \frac{7501}{2500}x and \frac{x}{20} to get \frac{3813}{1250}x.
\frac{3813}{1250}x+\frac{x}{15\times 90}
Express \frac{\frac{x}{15}}{90} as a single fraction.
\frac{3813}{1250}x+\frac{x}{1350}
Multiply 15 and 90 to get 1350.
\frac{51488}{16875}x
Combine \frac{3813}{1250}x and \frac{x}{1350} to get \frac{51488}{16875}x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\times 9}{3}+\frac{\frac{x}{25}}{100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Divide x by \frac{3}{9} by multiplying x by the reciprocal of \frac{3}{9}.
\frac{\mathrm{d}}{\mathrm{d}x}(x\times 3+\frac{\frac{x}{25}}{100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Divide x\times 9 by 3 to get x\times 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x\times 3+\frac{x}{25\times 100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Express \frac{\frac{x}{25}}{100} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(x\times 3+\frac{x}{2500}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Multiply 25 and 100 to get 2500.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7501}{2500}x+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Combine x\times 3 and \frac{x}{2500} to get \frac{7501}{2500}x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7501}{2500}x+\frac{x}{2\times 10}+\frac{\frac{x}{15}}{90})
Express \frac{\frac{x}{2}}{10} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7501}{2500}x+\frac{x}{20}+\frac{\frac{x}{15}}{90})
Multiply 2 and 10 to get 20.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3813}{1250}x+\frac{\frac{x}{15}}{90})
Combine \frac{7501}{2500}x and \frac{x}{20} to get \frac{3813}{1250}x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3813}{1250}x+\frac{x}{15\times 90})
Express \frac{\frac{x}{15}}{90} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3813}{1250}x+\frac{x}{1350})
Multiply 15 and 90 to get 1350.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{51488}{16875}x)
Combine \frac{3813}{1250}x and \frac{x}{1350} to get \frac{51488}{16875}x.
\frac{51488}{16875}x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{51488}{16875}x^{0}
Subtract 1 from 1.
\frac{51488}{16875}\times 1
For any term t except 0, t^{0}=1.
\frac{51488}{16875}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}