Solve for a
\left\{\begin{matrix}a=\frac{v-u}{z}\text{, }&v\neq u\text{ and }z\neq 0\\a\neq 0\text{, }&z=0\text{ and }v=u\end{matrix}\right.
Solve for u
u=v-az
a\neq 0
Share
Copied to clipboard
v-u=za
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
za=v-u
Swap sides so that all variable terms are on the left hand side.
\frac{za}{z}=\frac{v-u}{z}
Divide both sides by z.
a=\frac{v-u}{z}
Dividing by z undoes the multiplication by z.
a=\frac{v-u}{z}\text{, }a\neq 0
Variable a cannot be equal to 0.
v-u=za
Multiply both sides of the equation by a.
-u=za-v
Subtract v from both sides.
-u=az-v
The equation is in standard form.
\frac{-u}{-1}=\frac{az-v}{-1}
Divide both sides by -1.
u=\frac{az-v}{-1}
Dividing by -1 undoes the multiplication by -1.
u=v-az
Divide za-v by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}