Solve for a
\left\{\begin{matrix}a=\frac{yx^{3}-2}{\left(x-1\right)x^{2}}\text{, }&x\neq 0\text{ and }x\neq 1\\a\in \mathrm{R}\text{, }&y=2\text{ and }x=1\end{matrix}\right.
Graph
Quiz
Linear Equation
5 problems similar to:
\frac{ a( { x }^{ 3 } - { x }^{ 2 } )+2 }{ { x }^{ 3 } } =y
Share
Copied to clipboard
a\left(x^{3}-x^{2}\right)+2=yx^{3}
Multiply both sides of the equation by x^{3}.
ax^{3}-ax^{2}+2=yx^{3}
Use the distributive property to multiply a by x^{3}-x^{2}.
ax^{3}-ax^{2}=yx^{3}-2
Subtract 2 from both sides.
\left(x^{3}-x^{2}\right)a=yx^{3}-2
Combine all terms containing a.
\frac{\left(x^{3}-x^{2}\right)a}{x^{3}-x^{2}}=\frac{yx^{3}-2}{x^{3}-x^{2}}
Divide both sides by x^{3}-x^{2}.
a=\frac{yx^{3}-2}{x^{3}-x^{2}}
Dividing by x^{3}-x^{2} undoes the multiplication by x^{3}-x^{2}.
a=\frac{yx^{3}-2}{\left(x-1\right)x^{2}}
Divide yx^{3}-2 by x^{3}-x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}