Solve for a_20
a_{20}=1270a-1
a\neq 0
Solve for a
a=\frac{a_{20}+1}{1270}
a_{20}\neq -1
Share
Copied to clipboard
a=\frac{1}{1270}a_{20}+\frac{1}{1270}
Variable a_{20} cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by a_{20}+1.
\frac{1}{1270}a_{20}+\frac{1}{1270}=a
Swap sides so that all variable terms are on the left hand side.
\frac{1}{1270}a_{20}=a-\frac{1}{1270}
Subtract \frac{1}{1270} from both sides.
\frac{\frac{1}{1270}a_{20}}{\frac{1}{1270}}=\frac{a-\frac{1}{1270}}{\frac{1}{1270}}
Multiply both sides by 1270.
a_{20}=\frac{a-\frac{1}{1270}}{\frac{1}{1270}}
Dividing by \frac{1}{1270} undoes the multiplication by \frac{1}{1270}.
a_{20}=1270a-1
Divide a-\frac{1}{1270} by \frac{1}{1270} by multiplying a-\frac{1}{1270} by the reciprocal of \frac{1}{1270}.
a_{20}=1270a-1\text{, }a_{20}\neq -1
Variable a_{20} cannot be equal to -1.
a=\frac{1}{1270}a_{20}+\frac{1}{1270}
Multiply both sides of the equation by a_{20}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}