Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x\times 9x=\left(x-490\right)\times 16\left(490-x\right)
Variable x cannot be equal to any of the values 0,490 since division by zero is not defined. Multiply both sides of the equation by x\left(x-490\right), the least common multiple of 490-x,x.
-9xx=\left(x-490\right)\times 16\left(490-x\right)
Multiply -1 and 9 to get -9.
-9x^{2}=\left(x-490\right)\times 16\left(490-x\right)
Multiply x and x to get x^{2}.
-9x^{2}=\left(16x-7840\right)\left(490-x\right)
Use the distributive property to multiply x-490 by 16.
-9x^{2}=15680x-16x^{2}-3841600
Use the distributive property to multiply 16x-7840 by 490-x and combine like terms.
-9x^{2}-15680x=-16x^{2}-3841600
Subtract 15680x from both sides.
-9x^{2}-15680x+16x^{2}=-3841600
Add 16x^{2} to both sides.
7x^{2}-15680x=-3841600
Combine -9x^{2} and 16x^{2} to get 7x^{2}.
7x^{2}-15680x+3841600=0
Add 3841600 to both sides.
x=\frac{-\left(-15680\right)±\sqrt{\left(-15680\right)^{2}-4\times 7\times 3841600}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -15680 for b, and 3841600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15680\right)±\sqrt{245862400-4\times 7\times 3841600}}{2\times 7}
Square -15680.
x=\frac{-\left(-15680\right)±\sqrt{245862400-28\times 3841600}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-15680\right)±\sqrt{245862400-107564800}}{2\times 7}
Multiply -28 times 3841600.
x=\frac{-\left(-15680\right)±\sqrt{138297600}}{2\times 7}
Add 245862400 to -107564800.
x=\frac{-\left(-15680\right)±11760}{2\times 7}
Take the square root of 138297600.
x=\frac{15680±11760}{2\times 7}
The opposite of -15680 is 15680.
x=\frac{15680±11760}{14}
Multiply 2 times 7.
x=\frac{27440}{14}
Now solve the equation x=\frac{15680±11760}{14} when ± is plus. Add 15680 to 11760.
x=1960
Divide 27440 by 14.
x=\frac{3920}{14}
Now solve the equation x=\frac{15680±11760}{14} when ± is minus. Subtract 11760 from 15680.
x=280
Divide 3920 by 14.
x=1960 x=280
The equation is now solved.
-x\times 9x=\left(x-490\right)\times 16\left(490-x\right)
Variable x cannot be equal to any of the values 0,490 since division by zero is not defined. Multiply both sides of the equation by x\left(x-490\right), the least common multiple of 490-x,x.
-9xx=\left(x-490\right)\times 16\left(490-x\right)
Multiply -1 and 9 to get -9.
-9x^{2}=\left(x-490\right)\times 16\left(490-x\right)
Multiply x and x to get x^{2}.
-9x^{2}=\left(16x-7840\right)\left(490-x\right)
Use the distributive property to multiply x-490 by 16.
-9x^{2}=15680x-16x^{2}-3841600
Use the distributive property to multiply 16x-7840 by 490-x and combine like terms.
-9x^{2}-15680x=-16x^{2}-3841600
Subtract 15680x from both sides.
-9x^{2}-15680x+16x^{2}=-3841600
Add 16x^{2} to both sides.
7x^{2}-15680x=-3841600
Combine -9x^{2} and 16x^{2} to get 7x^{2}.
\frac{7x^{2}-15680x}{7}=-\frac{3841600}{7}
Divide both sides by 7.
x^{2}+\left(-\frac{15680}{7}\right)x=-\frac{3841600}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-2240x=-\frac{3841600}{7}
Divide -15680 by 7.
x^{2}-2240x=-548800
Divide -3841600 by 7.
x^{2}-2240x+\left(-1120\right)^{2}=-548800+\left(-1120\right)^{2}
Divide -2240, the coefficient of the x term, by 2 to get -1120. Then add the square of -1120 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2240x+1254400=-548800+1254400
Square -1120.
x^{2}-2240x+1254400=705600
Add -548800 to 1254400.
\left(x-1120\right)^{2}=705600
Factor x^{2}-2240x+1254400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1120\right)^{2}}=\sqrt{705600}
Take the square root of both sides of the equation.
x-1120=840 x-1120=-840
Simplify.
x=1960 x=280
Add 1120 to both sides of the equation.