Evaluate
909
Factor
3^{2}\times 101
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)9999}\\\end{array}
Use the 1^{st} digit 9 from dividend 9999
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)9999}\\\end{array}
Since 9 is less than 11, use the next digit 9 from dividend 9999 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)9999}\\\end{array}
Use the 2^{nd} digit 9 from dividend 9999
\begin{array}{l}\phantom{11)}09\phantom{4}\\11\overline{)9999}\\\phantom{11)}\underline{\phantom{}99\phantom{99}}\\\phantom{11)99}0\\\end{array}
Find closest multiple of 11 to 99. We see that 9 \times 11 = 99 is the nearest. Now subtract 99 from 99 to get reminder 0. Add 9 to quotient.
\begin{array}{l}\phantom{11)}09\phantom{5}\\11\overline{)9999}\\\phantom{11)}\underline{\phantom{}99\phantom{99}}\\\phantom{11)99}9\\\end{array}
Use the 3^{rd} digit 9 from dividend 9999
\begin{array}{l}\phantom{11)}090\phantom{6}\\11\overline{)9999}\\\phantom{11)}\underline{\phantom{}99\phantom{99}}\\\phantom{11)99}9\\\end{array}
Since 9 is less than 11, use the next digit 9 from dividend 9999 and add 0 to the quotient
\begin{array}{l}\phantom{11)}090\phantom{7}\\11\overline{)9999}\\\phantom{11)}\underline{\phantom{}99\phantom{99}}\\\phantom{11)99}99\\\end{array}
Use the 4^{th} digit 9 from dividend 9999
\begin{array}{l}\phantom{11)}0909\phantom{8}\\11\overline{)9999}\\\phantom{11)}\underline{\phantom{}99\phantom{99}}\\\phantom{11)99}99\\\phantom{11)}\underline{\phantom{99}99\phantom{}}\\\phantom{11)9999}0\\\end{array}
Find closest multiple of 11 to 99. We see that 9 \times 11 = 99 is the nearest. Now subtract 99 from 99 to get reminder 0. Add 9 to quotient.
\text{Quotient: }909 \text{Reminder: }0
Since 0 is less than 11, stop the division. The reminder is 0. The topmost line 0909 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 909.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}