Evaluate
\frac{993}{10}=99.3
Factor
\frac{3 \cdot 331}{2 \cdot 5} = 99\frac{3}{10} = 99.3
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)993}\\\end{array}
Use the 1^{st} digit 9 from dividend 993
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)993}\\\end{array}
Since 9 is less than 10, use the next digit 9 from dividend 993 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)993}\\\end{array}
Use the 2^{nd} digit 9 from dividend 993
\begin{array}{l}\phantom{10)}09\phantom{4}\\10\overline{)993}\\\phantom{10)}\underline{\phantom{}90\phantom{9}}\\\phantom{10)9}9\\\end{array}
Find closest multiple of 10 to 99. We see that 9 \times 10 = 90 is the nearest. Now subtract 90 from 99 to get reminder 9. Add 9 to quotient.
\begin{array}{l}\phantom{10)}09\phantom{5}\\10\overline{)993}\\\phantom{10)}\underline{\phantom{}90\phantom{9}}\\\phantom{10)9}93\\\end{array}
Use the 3^{rd} digit 3 from dividend 993
\begin{array}{l}\phantom{10)}099\phantom{6}\\10\overline{)993}\\\phantom{10)}\underline{\phantom{}90\phantom{9}}\\\phantom{10)9}93\\\phantom{10)}\underline{\phantom{9}90\phantom{}}\\\phantom{10)99}3\\\end{array}
Find closest multiple of 10 to 93. We see that 9 \times 10 = 90 is the nearest. Now subtract 90 from 93 to get reminder 3. Add 9 to quotient.
\text{Quotient: }99 \text{Reminder: }3
Since 3 is less than 10, stop the division. The reminder is 3. The topmost line 099 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 99.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}