Solve for x
x=\frac{9\left(888a^{2}+222a+275\right)}{2\left(4a+1\right)}
a\neq -\frac{1}{4}
Solve for a (complex solution)
a=\frac{\sqrt{16x^{2}+7992x-18782199}}{7992}+\frac{x}{1998}-\frac{1}{8}
a=-\frac{\sqrt{16x^{2}+7992x-18782199}}{7992}+\frac{x}{1998}-\frac{1}{8}
Solve for a
a=\frac{\sqrt{16x^{2}+7992x-18782199}}{7992}+\frac{x}{1998}-\frac{1}{8}
a=-\frac{\sqrt{16x^{2}+7992x-18782199}}{7992}+\frac{x}{1998}-\frac{1}{8}\text{, }x\geq \frac{45\sqrt{2442}}{2}-\frac{999}{4}\text{ or }x\leq -\frac{45\sqrt{2442}}{2}-\frac{999}{4}
Graph
Share
Copied to clipboard
25\times 99=\left(8a+2\right)\left(x-999a\right)
Multiply both sides of the equation by 50\left(4a+1\right), the least common multiple of 8a+2,25.
2475=\left(8a+2\right)\left(x-999a\right)
Multiply 25 and 99 to get 2475.
2475=8ax-7992a^{2}+2x-1998a
Use the distributive property to multiply 8a+2 by x-999a.
8ax-7992a^{2}+2x-1998a=2475
Swap sides so that all variable terms are on the left hand side.
8ax+2x-1998a=2475+7992a^{2}
Add 7992a^{2} to both sides.
8ax+2x=2475+7992a^{2}+1998a
Add 1998a to both sides.
\left(8a+2\right)x=2475+7992a^{2}+1998a
Combine all terms containing x.
\left(8a+2\right)x=7992a^{2}+1998a+2475
The equation is in standard form.
\frac{\left(8a+2\right)x}{8a+2}=\frac{7992a^{2}+1998a+2475}{8a+2}
Divide both sides by 8a+2.
x=\frac{7992a^{2}+1998a+2475}{8a+2}
Dividing by 8a+2 undoes the multiplication by 8a+2.
x=\frac{9\left(888a^{2}+222a+275\right)}{2\left(4a+1\right)}
Divide 2475+7992a^{2}+1998a by 8a+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}