Evaluate
\frac{967}{18}\approx 53.722222222
Factor
\frac{967}{2 \cdot 3 ^ {2}} = 53\frac{13}{18} = 53.72222222222222
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)967}\\\end{array}
Use the 1^{st} digit 9 from dividend 967
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)967}\\\end{array}
Since 9 is less than 18, use the next digit 6 from dividend 967 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)967}\\\end{array}
Use the 2^{nd} digit 6 from dividend 967
\begin{array}{l}\phantom{18)}05\phantom{4}\\18\overline{)967}\\\phantom{18)}\underline{\phantom{}90\phantom{9}}\\\phantom{18)9}6\\\end{array}
Find closest multiple of 18 to 96. We see that 5 \times 18 = 90 is the nearest. Now subtract 90 from 96 to get reminder 6. Add 5 to quotient.
\begin{array}{l}\phantom{18)}05\phantom{5}\\18\overline{)967}\\\phantom{18)}\underline{\phantom{}90\phantom{9}}\\\phantom{18)9}67\\\end{array}
Use the 3^{rd} digit 7 from dividend 967
\begin{array}{l}\phantom{18)}053\phantom{6}\\18\overline{)967}\\\phantom{18)}\underline{\phantom{}90\phantom{9}}\\\phantom{18)9}67\\\phantom{18)}\underline{\phantom{9}54\phantom{}}\\\phantom{18)9}13\\\end{array}
Find closest multiple of 18 to 67. We see that 3 \times 18 = 54 is the nearest. Now subtract 54 from 67 to get reminder 13. Add 3 to quotient.
\text{Quotient: }53 \text{Reminder: }13
Since 13 is less than 18, stop the division. The reminder is 13. The topmost line 053 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 53.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}