Evaluate
\frac{12}{7}\approx 1.714285714
Factor
\frac{2 ^ {2} \cdot 3}{7} = 1\frac{5}{7} = 1.7142857142857142
Share
Copied to clipboard
\begin{array}{l}\phantom{56)}\phantom{1}\\56\overline{)96}\\\end{array}
Use the 1^{st} digit 9 from dividend 96
\begin{array}{l}\phantom{56)}0\phantom{2}\\56\overline{)96}\\\end{array}
Since 9 is less than 56, use the next digit 6 from dividend 96 and add 0 to the quotient
\begin{array}{l}\phantom{56)}0\phantom{3}\\56\overline{)96}\\\end{array}
Use the 2^{nd} digit 6 from dividend 96
\begin{array}{l}\phantom{56)}01\phantom{4}\\56\overline{)96}\\\phantom{56)}\underline{\phantom{}56\phantom{}}\\\phantom{56)}40\\\end{array}
Find closest multiple of 56 to 96. We see that 1 \times 56 = 56 is the nearest. Now subtract 56 from 96 to get reminder 40. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }40
Since 40 is less than 56, stop the division. The reminder is 40. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}