Evaluate
\frac{928}{33}\approx 28.121212121
Factor
\frac{2 ^ {5} \cdot 29}{3 \cdot 11} = 28\frac{4}{33} = 28.12121212121212
Share
Copied to clipboard
\begin{array}{l}\phantom{33)}\phantom{1}\\33\overline{)928}\\\end{array}
Use the 1^{st} digit 9 from dividend 928
\begin{array}{l}\phantom{33)}0\phantom{2}\\33\overline{)928}\\\end{array}
Since 9 is less than 33, use the next digit 2 from dividend 928 and add 0 to the quotient
\begin{array}{l}\phantom{33)}0\phantom{3}\\33\overline{)928}\\\end{array}
Use the 2^{nd} digit 2 from dividend 928
\begin{array}{l}\phantom{33)}02\phantom{4}\\33\overline{)928}\\\phantom{33)}\underline{\phantom{}66\phantom{9}}\\\phantom{33)}26\\\end{array}
Find closest multiple of 33 to 92. We see that 2 \times 33 = 66 is the nearest. Now subtract 66 from 92 to get reminder 26. Add 2 to quotient.
\begin{array}{l}\phantom{33)}02\phantom{5}\\33\overline{)928}\\\phantom{33)}\underline{\phantom{}66\phantom{9}}\\\phantom{33)}268\\\end{array}
Use the 3^{rd} digit 8 from dividend 928
\begin{array}{l}\phantom{33)}028\phantom{6}\\33\overline{)928}\\\phantom{33)}\underline{\phantom{}66\phantom{9}}\\\phantom{33)}268\\\phantom{33)}\underline{\phantom{}264\phantom{}}\\\phantom{33)99}4\\\end{array}
Find closest multiple of 33 to 268. We see that 8 \times 33 = 264 is the nearest. Now subtract 264 from 268 to get reminder 4. Add 8 to quotient.
\text{Quotient: }28 \text{Reminder: }4
Since 4 is less than 33, stop the division. The reminder is 4. The topmost line 028 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}