Evaluate
\frac{92}{53}\approx 1.735849057
Factor
\frac{2 ^ {2} \cdot 23}{53} = 1\frac{39}{53} = 1.7358490566037736
Share
Copied to clipboard
\begin{array}{l}\phantom{53)}\phantom{1}\\53\overline{)92}\\\end{array}
Use the 1^{st} digit 9 from dividend 92
\begin{array}{l}\phantom{53)}0\phantom{2}\\53\overline{)92}\\\end{array}
Since 9 is less than 53, use the next digit 2 from dividend 92 and add 0 to the quotient
\begin{array}{l}\phantom{53)}0\phantom{3}\\53\overline{)92}\\\end{array}
Use the 2^{nd} digit 2 from dividend 92
\begin{array}{l}\phantom{53)}01\phantom{4}\\53\overline{)92}\\\phantom{53)}\underline{\phantom{}53\phantom{}}\\\phantom{53)}39\\\end{array}
Find closest multiple of 53 to 92. We see that 1 \times 53 = 53 is the nearest. Now subtract 53 from 92 to get reminder 39. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }39
Since 39 is less than 53, stop the division. The reminder is 39. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}