Evaluate
\frac{907}{900}\approx 1.007777778
Factor
\frac{907}{2 ^ {2} \cdot 3 ^ {2} \cdot 5 ^ {2}} = 1\frac{7}{900} = 1.0077777777777779
Share
Copied to clipboard
\begin{array}{l}\phantom{900)}\phantom{1}\\900\overline{)907}\\\end{array}
Use the 1^{st} digit 9 from dividend 907
\begin{array}{l}\phantom{900)}0\phantom{2}\\900\overline{)907}\\\end{array}
Since 9 is less than 900, use the next digit 0 from dividend 907 and add 0 to the quotient
\begin{array}{l}\phantom{900)}0\phantom{3}\\900\overline{)907}\\\end{array}
Use the 2^{nd} digit 0 from dividend 907
\begin{array}{l}\phantom{900)}00\phantom{4}\\900\overline{)907}\\\end{array}
Since 90 is less than 900, use the next digit 7 from dividend 907 and add 0 to the quotient
\begin{array}{l}\phantom{900)}00\phantom{5}\\900\overline{)907}\\\end{array}
Use the 3^{rd} digit 7 from dividend 907
\begin{array}{l}\phantom{900)}001\phantom{6}\\900\overline{)907}\\\phantom{900)}\underline{\phantom{}900\phantom{}}\\\phantom{900)99}7\\\end{array}
Find closest multiple of 900 to 907. We see that 1 \times 900 = 900 is the nearest. Now subtract 900 from 907 to get reminder 7. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }7
Since 7 is less than 900, stop the division. The reminder is 7. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}