Evaluate
\frac{1800}{1463}\approx 1.230348599
Factor
\frac{2 ^ {3} \cdot 3 ^ {2} \cdot 5 ^ {2}}{7 \cdot 11 \cdot 19} = 1\frac{337}{1463} = 1.2303485987696514
Share
Copied to clipboard
\begin{array}{l}\phantom{7315000)}\phantom{1}\\7315000\overline{)9000000}\\\end{array}
Use the 1^{st} digit 9 from dividend 9000000
\begin{array}{l}\phantom{7315000)}0\phantom{2}\\7315000\overline{)9000000}\\\end{array}
Since 9 is less than 7315000, use the next digit 0 from dividend 9000000 and add 0 to the quotient
\begin{array}{l}\phantom{7315000)}0\phantom{3}\\7315000\overline{)9000000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 9000000
\begin{array}{l}\phantom{7315000)}00\phantom{4}\\7315000\overline{)9000000}\\\end{array}
Since 90 is less than 7315000, use the next digit 0 from dividend 9000000 and add 0 to the quotient
\begin{array}{l}\phantom{7315000)}00\phantom{5}\\7315000\overline{)9000000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 9000000
\begin{array}{l}\phantom{7315000)}000\phantom{6}\\7315000\overline{)9000000}\\\end{array}
Since 900 is less than 7315000, use the next digit 0 from dividend 9000000 and add 0 to the quotient
\begin{array}{l}\phantom{7315000)}000\phantom{7}\\7315000\overline{)9000000}\\\end{array}
Use the 4^{th} digit 0 from dividend 9000000
\begin{array}{l}\phantom{7315000)}0000\phantom{8}\\7315000\overline{)9000000}\\\end{array}
Since 9000 is less than 7315000, use the next digit 0 from dividend 9000000 and add 0 to the quotient
\begin{array}{l}\phantom{7315000)}0000\phantom{9}\\7315000\overline{)9000000}\\\end{array}
Use the 5^{th} digit 0 from dividend 9000000
\begin{array}{l}\phantom{7315000)}00000\phantom{10}\\7315000\overline{)9000000}\\\end{array}
Since 90000 is less than 7315000, use the next digit 0 from dividend 9000000 and add 0 to the quotient
\begin{array}{l}\phantom{7315000)}00000\phantom{11}\\7315000\overline{)9000000}\\\end{array}
Use the 6^{th} digit 0 from dividend 9000000
\begin{array}{l}\phantom{7315000)}000000\phantom{12}\\7315000\overline{)9000000}\\\end{array}
Since 900000 is less than 7315000, use the next digit 0 from dividend 9000000 and add 0 to the quotient
\begin{array}{l}\phantom{7315000)}000000\phantom{13}\\7315000\overline{)9000000}\\\end{array}
Use the 7^{th} digit 0 from dividend 9000000
\begin{array}{l}\phantom{7315000)}0000001\phantom{14}\\7315000\overline{)9000000}\\\phantom{7315000)}\underline{\phantom{}7315000\phantom{}}\\\phantom{7315000)}1685000\\\end{array}
Find closest multiple of 7315000 to 9000000. We see that 1 \times 7315000 = 7315000 is the nearest. Now subtract 7315000 from 9000000 to get reminder 1685000. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }1685000
Since 1685000 is less than 7315000, stop the division. The reminder is 1685000. The topmost line 0000001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}