Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{90\pi \left(\sqrt{36+1^{2}}\right)^{2}}{360}-\frac{90\pi \left(\sqrt{4^{2}+2^{2}}\right)^{2}}{360}
Calculate 6 to the power of 2 and get 36.
\frac{90\pi \left(\sqrt{36+1}\right)^{2}}{360}-\frac{90\pi \left(\sqrt{4^{2}+2^{2}}\right)^{2}}{360}
Calculate 1 to the power of 2 and get 1.
\frac{90\pi \left(\sqrt{37}\right)^{2}}{360}-\frac{90\pi \left(\sqrt{4^{2}+2^{2}}\right)^{2}}{360}
Add 36 and 1 to get 37.
\frac{90\pi \times 37}{360}-\frac{90\pi \left(\sqrt{4^{2}+2^{2}}\right)^{2}}{360}
The square of \sqrt{37} is 37.
\frac{3330\pi }{360}-\frac{90\pi \left(\sqrt{4^{2}+2^{2}}\right)^{2}}{360}
Multiply 90 and 37 to get 3330.
\frac{37}{4}\pi -\frac{90\pi \left(\sqrt{4^{2}+2^{2}}\right)^{2}}{360}
Divide 3330\pi by 360 to get \frac{37}{4}\pi .
\frac{37}{4}\pi -\frac{90\pi \left(\sqrt{16+2^{2}}\right)^{2}}{360}
Calculate 4 to the power of 2 and get 16.
\frac{37}{4}\pi -\frac{90\pi \left(\sqrt{16+4}\right)^{2}}{360}
Calculate 2 to the power of 2 and get 4.
\frac{37}{4}\pi -\frac{90\pi \left(\sqrt{20}\right)^{2}}{360}
Add 16 and 4 to get 20.
\frac{37}{4}\pi -\frac{90\pi \times 20}{360}
The square of \sqrt{20} is 20.
\frac{37}{4}\pi -\frac{1800\pi }{360}
Multiply 90 and 20 to get 1800.
\frac{37}{4}\pi -5\pi
Divide 1800\pi by 360 to get 5\pi .
\frac{17}{4}\pi
Combine \frac{37}{4}\pi and -5\pi to get \frac{17}{4}\pi .