Solve for x
x = \frac{224}{61} = 3\frac{41}{61} \approx 3.672131148
Graph
Share
Copied to clipboard
\frac{\frac{1}{14}\times 9\left(-9x+56\right)}{\frac{1}{14}\times 5\left(5x+56\right)}=\frac{5}{9}
Factor the expressions that are not already factored in \frac{9\left(4-\frac{9}{14}x\right)}{5\left(4+\frac{5}{14}x\right)}.
\frac{9\left(-9x+56\right)}{5\times \left(\frac{1}{14}\right)^{0}\left(5x+56\right)}=\frac{5}{9}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{9\left(-9x+56\right)}{5\times 1\left(5x+56\right)}=\frac{5}{9}
Calculate \frac{1}{14} to the power of 0 and get 1.
\frac{9\left(-9x+56\right)}{5\left(5x+56\right)}=\frac{5}{9}
Multiply 5 and 1 to get 5.
\frac{-81x+504}{5\left(5x+56\right)}=\frac{5}{9}
Use the distributive property to multiply 9 by -9x+56.
\frac{-81x+504}{25x+280}=\frac{5}{9}
Use the distributive property to multiply 5 by 5x+56.
9\left(-81x+504\right)=25\left(5x+56\right)
Variable x cannot be equal to -\frac{56}{5} since division by zero is not defined. Multiply both sides of the equation by 45\left(5x+56\right), the least common multiple of 25x+280,9.
-729x+4536=25\left(5x+56\right)
Use the distributive property to multiply 9 by -81x+504.
-729x+4536=125x+1400
Use the distributive property to multiply 25 by 5x+56.
-729x+4536-125x=1400
Subtract 125x from both sides.
-854x+4536=1400
Combine -729x and -125x to get -854x.
-854x=1400-4536
Subtract 4536 from both sides.
-854x=-3136
Subtract 4536 from 1400 to get -3136.
x=\frac{-3136}{-854}
Divide both sides by -854.
x=\frac{224}{61}
Reduce the fraction \frac{-3136}{-854} to lowest terms by extracting and canceling out -14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}