Evaluate
\frac{\left(15x-14y\right)^{2}}{1225}
Factor
\frac{\left(15x-14y\right)^{2}}{1225}
Share
Copied to clipboard
\frac{5\times 9x^{2}}{245}-\frac{7\times 12xy}{245}+\frac{4y^{2}}{25}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 49 and 35 is 245. Multiply \frac{9x^{2}}{49} times \frac{5}{5}. Multiply \frac{12xy}{35} times \frac{7}{7}.
\frac{5\times 9x^{2}-7\times 12xy}{245}+\frac{4y^{2}}{25}
Since \frac{5\times 9x^{2}}{245} and \frac{7\times 12xy}{245} have the same denominator, subtract them by subtracting their numerators.
\frac{45x^{2}-84xy}{245}+\frac{4y^{2}}{25}
Do the multiplications in 5\times 9x^{2}-7\times 12xy.
\frac{5\left(45x^{2}-84xy\right)}{1225}+\frac{49\times 4y^{2}}{1225}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 245 and 25 is 1225. Multiply \frac{45x^{2}-84xy}{245} times \frac{5}{5}. Multiply \frac{4y^{2}}{25} times \frac{49}{49}.
\frac{5\left(45x^{2}-84xy\right)+49\times 4y^{2}}{1225}
Since \frac{5\left(45x^{2}-84xy\right)}{1225} and \frac{49\times 4y^{2}}{1225} have the same denominator, add them by adding their numerators.
\frac{225x^{2}-420xy+196y^{2}}{1225}
Do the multiplications in 5\left(45x^{2}-84xy\right)+49\times 4y^{2}.
\frac{225x^{2}-420xy+196y^{2}}{1225}
Factor out \frac{1}{1225}.
\left(15x-14y\right)^{2}
Consider 225x^{2}-420xy+196y^{2}. Use the perfect square formula, a^{2}-2ab+b^{2}=\left(a-b\right)^{2}, where a=15x and b=14y.
\frac{\left(15x-14y\right)^{2}}{1225}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}