Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{9\times 3\sqrt{2}+9\sqrt{6}+3200\sqrt{54}}{240\sqrt{6}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{27\sqrt{2}+9\sqrt{6}+3200\sqrt{54}}{240\sqrt{6}}
Multiply 9 and 3 to get 27.
\frac{27\sqrt{2}+9\sqrt{6}+3200\times 3\sqrt{6}}{240\sqrt{6}}
Factor 54=3^{2}\times 6. Rewrite the square root of the product \sqrt{3^{2}\times 6} as the product of square roots \sqrt{3^{2}}\sqrt{6}. Take the square root of 3^{2}.
\frac{27\sqrt{2}+9\sqrt{6}+9600\sqrt{6}}{240\sqrt{6}}
Multiply 3200 and 3 to get 9600.
\frac{27\sqrt{2}+9609\sqrt{6}}{240\sqrt{6}}
Combine 9\sqrt{6} and 9600\sqrt{6} to get 9609\sqrt{6}.
\frac{\left(27\sqrt{2}+9609\sqrt{6}\right)\sqrt{6}}{240\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{27\sqrt{2}+9609\sqrt{6}}{240\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\left(27\sqrt{2}+9609\sqrt{6}\right)\sqrt{6}}{240\times 6}
The square of \sqrt{6} is 6.
\frac{\left(27\sqrt{2}+9609\sqrt{6}\right)\sqrt{6}}{1440}
Multiply 240 and 6 to get 1440.
\frac{27\sqrt{2}\sqrt{6}+9609\left(\sqrt{6}\right)^{2}}{1440}
Use the distributive property to multiply 27\sqrt{2}+9609\sqrt{6} by \sqrt{6}.
\frac{27\sqrt{2}\sqrt{2}\sqrt{3}+9609\left(\sqrt{6}\right)^{2}}{1440}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{27\times 2\sqrt{3}+9609\left(\sqrt{6}\right)^{2}}{1440}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{54\sqrt{3}+9609\left(\sqrt{6}\right)^{2}}{1440}
Multiply 27 and 2 to get 54.
\frac{54\sqrt{3}+9609\times 6}{1440}
The square of \sqrt{6} is 6.
\frac{54\sqrt{3}+57654}{1440}
Multiply 9609 and 6 to get 57654.